4,551 research outputs found

    Memory effects on the statistics of fragmentation

    Full text link
    We investigate through extensive molecular dynamics simulations the fragmentation process of two-dimensional Lennard-Jones systems. After thermalization, the fragmentation is initiated by a sudden increment to the radial component of the particles' velocities. We study the effect of temperature of the thermalized system as well as the influence of the impact energy of the ``explosion'' event on the statistics of mass fragments. Our results indicate that the cumulative distribution of fragments follows the scaling ansatz F(m)mαexp[(m/m0)γ]F(m)\propto m^{-\alpha}\exp{[-(m/m_0)^\gamma]}, where mm is the mass, m0m_0 and γ\gamma are cutoff parameters, and α\alpha is a scaling exponent that is dependent on the temperature. More precisely, we show clear evidence that there is a characteristic scaling exponent α\alpha for each macroscopic phase of the thermalized system, i.e., that the non-universal behavior of the fragmentation process is dictated by the state of the system before it breaks down.Comment: 5 pages, 8 figure

    Plurality Voting: the statistical laws of democracy in Brazil

    Full text link
    We explore the statistical laws behind the plurality voting system by investigating the election results for mayor held in Brazil in 2004. Our analysis indicate that the vote partition among mayor candidates of the same city tends to be "polarized" between two candidates, a phenomenon that can be closely described by means of a simple fragmentation model. Complex concepts like "government continuity" and "useful vote" can be identified and even statistically quantified through our approach.Comment: 4 pages, 4 figure

    Model for erosion-deposition patterns

    Full text link
    We investigate through computational simulations with a pore network model the formation of patterns caused by erosion-deposition mechanisms. In this model, the geometry of the pore space changes dynamically as a consequence of the coupling between the fluid flow and the movement of particles due to local drag forces. Our results for this irreversible process show that the model is capable to reproduce typical natural patterns caused by well known erosion processes. Moreover, we observe that, within a certain range of porosity values, the grains form clusters that are tilted with respect to the horizontal with a characteristic angle. We compare our results to recent experiments for granular material in flowing water and show that they present a satisfactory agreement.Comment: 8 pages, 12 figures, submitted to Phys. Rev.
    corecore