19,157 research outputs found
Effects of quantum deformation on the spin-1/2 Aharonov-Bohm problem
In this letter we study the Aharonov-Bohm problem for a spin-1/2 particle in
the quantum deformed framework generated by the -Poincar\'{e}-Hopf
algebra. We consider the nonrelativistic limit of the -deformed Dirac
equation and use the spin-dependent term to impose an upper bound on the
magnitude of the deformation parameter . By using the self-adjoint
extension approach, we examine the scattering and bound state scenarios. After
obtaining the scattering phase shift and the -matrix, the bound states
energies are obtained by analyzing the pole structure of the latter. Using a
recently developed general regularization prescription [Phys. Rev. D.
\textbf{85}, 041701(R) (2012)], the self-adjoint extension parameter is
determined in terms of the physics of the problem. For last, we analyze the
problem of helicity conservation.Comment: 12 pages, no figures, submitted for publicatio
Remarks on the Aharonov-Casher dynamics in a CPT-odd Lorentz-violating background
The Aharonov-Casher problem in the presence of a Lorentz-violating background
nonminimally coupled to a spinor and a gauge field is examined. Using an
approach based on the self-adjoint extension method, an expression for the
bound state energies is obtained in terms of the physics of the problem by
determining the self-adjoint extension parameter.Comment: Matches published versio
- …