14 research outputs found

    Chitosan-Based Therapeutic Systems for Superficial Candidiasis Treatment. Synergetic Activity of Nystatin and Propolis

    Get PDF
    The paper deals with new approaches to chitosan (CS)-based antifungal therapeutic formulations designed to fulfill the requirements of specific applications. Gel-like formulations were prepared by mixing CS dissolved in aqueous lactic acid (LA) solution with nystatin (NYS) powder and/or propolis (PRO) aqueous solution dispersed in glycerin, followed by water evaporation to yield flexible mesoporous (pore widths of 2–4 nm) films of high specific surfaces between 1 × 103 and 1.7 × 103 m2/g. Morphological evaluation of the antifungal films showed uniform dispersion and downsizing of NYS crystallites (with initial sizes up to 50 μm). Their mechanical properties were found to be close to those of soft tissues (Young’s modulus values between 0.044–0.025 MPa). The films presented hydration capacities in physiological condition depending on their composition, i.e., higher for NYS-charged (628%), as compared with PRO loaded films (118–129%). All NYS charged films presented a quick release for the first 10 min followed by a progressive increase of the release efficiency at 48.6%, for the samples containing NYS alone and decreasing values with increasing amount of PRO to 45.9% and 42.8% after 5 h. By in vitro analysis, the hydrogels with acidic pH values around 3.8 were proven to be active against Candida albicans and Candida glabrata species. The time-killing assay performed during 24 h on Candida albicans in synthetic vagina-simulative medium showed that the hydrogel formulations containing both NYS and PRO presented the faster slowing down of the fungal growth, from colony-forming unit (CFU)/mL of 1.24 × 107 to CFU/mL < 10 (starting from the first 6 h)

    Hemostatic Cryogels Based on Oxidized Pullulan/Dopamine with Potential Use as Wound Dressings

    Get PDF
    The impetus for research into hydrogels based on selectively oxidized polysaccharides has been stimulated by the diversity of potential biomedical applications. Towards the development of a hemostatic wound dressing in this study, we creatively combined the (hemi)acetal and Schiff base bonds to prepare a series of multifunctional cryogels based on dialdehyde pullulan and dopamine. The designed structures were verified by NMR and FTIR spectroscopy. Network parameters and dynamic sorption studies were correlated with environmental scanning microscopy results, thus confirming the successful integration of the two components and the opportunities for finely tuning the structure–properties balance. The viscoelastic parameters (storage and loss moduli, complex and apparent viscosities, zero shear viscosity, yield stress) and the structural recovery capacity after applying a large deformation were determined and discussed. The mechanical stability and hemostatic activity suggest that the optimal combination of selectively oxidized pullulan and dopamine can be a promising toolkit for wound management

    Predictive value of comorbid conditions for COVID-19 mortality

    Get PDF
    In this paper, we aim at understanding the broad spectrum of factors influencing the survival of infected patients and the correlations between these factors to create a predictive probabilistic score for surviving the COVID-19 disease. Initially, 510 hospital admissions were counted in the study, out of which 310 patients did not survive. A prediction model was developed based on this data by using a Bayesian approach. Following the data collection process for the development study, the second cohort of patients totaling 541 was built to validate the risk matrix previously created. The final model has an area under the curve of 0.773 and predicts the mortality risk of SARS-CoV-2 infection based on nine disease groups while considering the gender and age of the patient as distinct risk groups. To ease medical workers’ assessment of patients, we created a visual risk matrix based on a probabilistic model, ranging from a score of 1 (very low mortality risk) to 5 (very high mortality risk). Each score comprises a correlation between existing comorbid conditions, the number of comorbid conditions, gender, and age group category. This clinical model can be generalized in a hospital context and can be used to identify patients at high risk for whom immediate intervention might be required

    Toxicity assessment of long-term exposure to non-thermal plasma activated water in mice

    Get PDF
    Non-thermal plasma activated water (PAW) has recently emerged as a powerful antimicrobial agent. Despite numerous potential bio-medical applications, studies concerning toxicity in live animals, especially after long-term exposure, are scarce. Our study aimed to assess the effects of long-term watering with PAWon the health of CD1 mice. PAWwas prepared from distilled water with a GlidArc reactor according to a previously published protocol. The pH was 2.78. The mice received PAW(experimental group) or tap water (control group) daily for 90 days as the sole water source. After 90 days, the following investigations were performed on the euthanatized animals: gross necropsy, teeth mineral composition, histopathology, immunohistochemistry, hematology, blood biochemistry, methemoglobin level and cytokine profile. Mice tolerated PAWvery well and no adverse effects were observed during the entire period of the experiment. Histopathological examination of the organs and tissues did not reveal any structural changes. Moreover, the expression of proliferation markers PCNA and Ki67 has not been identified in the epithelium of the upper digestive tract, indicating the absence of any pre- or neoplastic transformations. The results of our study demonstrated that long-term exposure to PAWcaused no toxic effects and could be used as oral antiseptic solution in dental medicine

    Antibacterial and Antifungal Silver Nanoparticles with Tunable Size Embedded in Various Cellulose-Based Matrices

    Get PDF
    The aim of this study was to synthesize silver nanoparticles (AgNPs) using cellulose derivatives and to evaluate their antimicrobial potential. As effective reducing and stabilizing agents for AgNPs, cellulose derivatives, such as hydroxypropyl cellulose (HPC), methylcellulose (MC), ethylcellulose (EC), and cellulose acetate (CA), were used. Their ability to reduce silver ions as well as the size of the resulting AgNPs were compared. The formation and stability of the reduced AgNPs in the solution were monitored using UV-Vis analysis. The size, morphology, and charge of the AgNPs were evaluated. We found that, when using cellulosic derivatives, AgNPs with sizes ranging from 17 to 89 nm and different stabilities were obtained. The parameters, such as size and &zeta; potential indicate the stability of AgNPs, with AgNPs-CA and AgNPs-HPC being considered more stable than AgNPs-EC and AgNPs-MC since they show higher &zeta; potential values. In addition, the AgNPs showed antimicrobial activity against all reference strains and clinical isolates. MIC values between 0.0312 and 0.125 mM had a bactericidal effect on both Gram-positive and Gram-negative bacteria. The fungicidal effect was obtained at a MIC value of 0.125 mM. These results may provide rational support in the design of medical gauze products, including gauze pads, rolls, and sponges
    corecore