5 research outputs found

    On the realization of Symmetries in Quantum Mechanics

    Full text link
    The aim of this paper is to give a simple, geometric proof of Wigner's theorem on the realization of symmetries in quantum mechanics that clarifies its relation to projective geometry. Although several proofs exist already, it seems that the relevance of Wigner's theorem is not fully appreciated in general. It is Wigner's theorem which allows the use of linear realizations of symmetries and therefore guarantees that, in the end, quantum theory stays a linear theory. In the present paper, we take a strictly geometrical point of view in order to prove this theorem. It becomes apparent that Wigner's theorem is nothing else but a corollary of the fundamental theorem of projective geometry. In this sense, the proof presented here is simple, transparent and therefore accessible even to elementary treatments in quantum mechanics.Comment: 8 page

    Remarks on the Configuration Space Approach to Spin-Statistics

    Full text link
    The angular momentum operators for a system of two spin-zero indistinguishable particles are constructed, using Isham's Canonical Group Quantization method. This mathematically rigorous method provides a hint at the correct definition of (total) angular momentum operators, for arbitrary spin, in a system of indistinguishable particles. The connection with other configuration space approaches to spin-statistics is discussed, as well as the relevance of the obtained results in view of a possible alternative proof of the spin-statistics theorem.Comment: 18 page
    corecore