17 research outputs found

    Uniformity in the Wiener-Wintner theorem for nilsequences

    Full text link
    We prove a uniform extension of the Wiener-Wintner theorem for nilsequences due to Host and Kra and a nilsequence extension of the topological Wiener-Wintner theorem due to Assani. Our argument is based on (vertical) Fourier analysis and a Sobolev embedding theorem.Comment: v3: 18 p., proof that the cube construction produces compact homogeneous spaces added, measurability issues in the proof of Theorem 1.5 addressed. We thank the anonymous referees for pointing out these gaps in v

    On minimal self-joinings in topological dynamics

    No full text

    Simple systems are disjoint from Gaussian systems

    No full text
    We prove the theorem promised in the title. Gaussians can be distinguished from simple maps by their property of divisibility. Roughly speaking, a system is divisible if it has a rich supply of direct product splittings. Gaussians are divisible and weakly mixing simple maps have no splittings at all so they cannot be isomorphic. The proof that they are disjoint consists of an elaboration of this idea, which involves, among other things, the notion of virtual divisibility, which is, more or less, divisibility up to distal extensions. The theory of Kronecker Gaussians also plays a crucial role

    Multiple Mixing and Rank One Group Actions

    No full text
    Suppose G is a countable, Abelian group with an element of infinite order and let X be a mixing rank one action of G on a probability space. Suppose further that the Følner sequence {Fn} indexing the towers of X satisfies a “bounded intersection property”: there is a constant p such that each {Fn} can intersect no more than p disjoint translates of {Fn}. Then X is mixing of all orders. When G = Z, this extends the results of Kalikow and Ryzhikov to a large class of “funny” rank one transformations. We follow Ryzhikov’s joining technique in our proof: the main theorem follows from showing that any pairwise independent joining of k copies of X is necessarily product measure. This method generalizes Ryzhikov’s technique

    Partitions with independent iterates in random dynamical systems

    No full text
    corecore