3 research outputs found

    A Paper-Based Microfluidic Fuel Cell Using Soft Drinks as a Renewable Energy Source

    No full text
    The research aims were to construct an air-breathing paper-based microfluidic fuel cell (paper-based μ FC) and to evaluated it with different soft drinks to provide energy for their prospective use in portable devices as an emergency power source. First, in a half-cell configuration, cyclic voltammetry showed that glucose, maltose, and fructose had specific oxidation zones in the presence of platinum-ruthenium on carbon (PtRu/C) when they were individual. Still, when they were mixed, glucose was observed to be oxidized to a greater extent than fructose and maltose. After, when a paper-based μ FC was constructed, PtRu/C and platinum on carbon (Pt/C) were used as anode and cathode, the performance of this μ FC was mostly influenced by the concentration of glucose present in each soft drink, obtaining maximum power densities at room temperature of 0.061, 0.063, 0.060, and 0.073 mW cm − 2 for Coca Cola ® , Pepsi ® , Dr. Pepper ® , and 7up ® , respectively. Interestingly, when the soft drinks were cooled, the performance was increased up to 85%. Furthermore, a four-cell stack μ FC was constructed to demonstrate its usefulness as a possible power supply, obtaining a power density of 0.4 mW cm − 2 , using Coca Cola ® as fuel and air as oxidant. Together, the results of the present study indicate an alternative application of an μ FC using soft drinks as a backup source of energy in emergencies

    Digital Pregnancy Test Powered by an Air-Breathing Paper-Based Microfluidic Fuel Cell Stack Using Human Urine as Fuel

    No full text
    The direct integration of paper-based microfluidic fuel cells (μFC’s) toward creating autonomous lateral flow assays has attracted attention. Here, we show that an air-breathing paper-based μFC could be used as a power supply in pregnancy tests by oxidizing the human urine used for the diagnosis. We present an air-breathing paper-based μFC connected to a pregnancy test, and for the first time, as far as we know, it is powered by human urine without needing any external electrolyte. It uses TiO2-Ni as anode and Pt/C as cathode; the performance shows a maximum value of voltage and current and power densities of ∼0.96 V, 1.00 mA cm−2, and 0.23 mW cm−2, respectively. Furthermore, we present a simple design of a paper-based μFC’s stack powered with urine that shows a maximum voltage and maximum current and power densities of ∼1.89 V, 2.77 mA cm−2 and 1.38 mW cm−2, respectively, which powers the display of a pregnancy test allowing to see the analysis results

    Learning Management System-Based Evaluation to Determine Academic Efficiency Performance

    No full text
    At present, supporting e-learning with interactive virtual campuses is a future goal in education. Models that measure the levels of acceptance, performance, and academic efficiency have been recently developed. In light of the above, we carried out a study to evaluate a model for which architecture design, configuration, metadata, and statistical coefficients were obtained using four Learning Management Systems (LMSs). That allowed us to determine reliability, accuracy, and correlation, using and integrating the factors that other researchers have previously used, only using isolated models, such as Anxiety–Innovation (AI), Utility and Use (UU), Tools Learning (TL), System Factors (SF), Access Strategies (AS), Virtual Library (VL), and Mobile Use (MU). The research was conducted over one year in nine groups. The results from an LMS Classroom, architecturally and configuration-wise, had the highest level of performance, with an average of 73% when evaluated using statistical coefficients. The LMS Classroom had a good acceptance and a greater impact: SF, 82%, AI, 80%, and VL, 43%, while out of the seven factors, those with the most significant impact on academic efficiency were TL, 80%, VL, 82%, and MU, 85%
    corecore