2 research outputs found

    Simulation of Organic Liquid Products Deoxygenation by Multistage Countercurrent Absorber/Stripping Using CO2 as Solvent with Aspen-HYSYS: Thermodynamic Data Basis and EOS Modeling

    Full text link
    In this work, the thermodynamic data basis and equation of state (EOS) modeling necessary to simulate the fractionation of organic liquid products (OLP), a liquid reaction product obtained by thermal catalytic cracking of palm oil at 450 °C, 1.0 atmosphere, with 10% (wt.) Na2CO3 as catalyst, in multistage countercurrent absorber/stripping columns using supercritical carbon dioxide (SC-CO2) as solvent, with Aspen-HYSYS was systematically investigated. The chemical composition of OLP was used to predict the density (ρ), boiling temperature (Tb), critical temperature (Tc), critical pressure (Pc), critical volume (Vc), and acentric factor (ω) of all the compounds present in OLP by applying the group contribution methods of Marrero-Gani, Han-Peng, Marrero-Pardillo, Constantinou-Gani, Joback and Reid, and Vetere. The RK-Aspen EOS used as thermodynamic fluid package, applied to correlate the experimental phase equilibrium data of binary systems OLP-i/CO2 available in the literature. The group contribution methods selected based on the lowest relative average deviation by computing Tb, Tc, Pc, Vc, and ω. For n-alkanes, the method of Marrero-Gani selected for the prediction of Tc, Pc and Vc, and that of Han-Peng for ω. For alkenes, the method of Marrero-Gani selected for the prediction of Tb and Tc, Marrero-Pardillo for Pc and Vc, and Han-Peng for ω. For unsubstituted cyclic hydrocarbons, the method of Constantinou-Gani selected for the prediction of Tb, Marrero-Gani for Tc, Joback for Pc and Vc, and the undirected method of Vetere for ω. For substituted cyclic hydrocarbons, the method of Constantinou-Gani selected for the prediction of Tb and Pc, Marrero-Gani for Tc and Vc, and the undirected method of Vetere for ω. For aromatic hydrocarbon, the method of Joback selected for the prediction of Tb, Constantinou-Gani for Tc and Vc, Marrero-Gani for Pc, and the undirected method of Vetere for ω. The regressions show that RK-Aspen EOS was able to describe the experimental phase equilibrium data for all the binary pairs undecane-CO2, tetradecane-CO2, pentadecane-CO2, hexadecane-CO2, octadecane-CO2, palmitic acid-CO2, and oleic acid-CO2, showing average absolute deviation for the liquid phase (AADx) between 0.8% and 1.25% and average absolute deviation for the gaseous phase (AADy) between 0.01% to 0.66%

    Economic Analysis of Thermal–Catalytic Process of Palm Oil (<i>Elaeis guineesensis,</i> Jacq) and Soap Phase Residue from Neutralization Process of Palm Oil (<i>Elaeis guineensis</i>, Jacq)

    Full text link
    Palm oil is, from an economic, environmental, and social point of view, a vegetable oil with great potential and the state of Pará-Brazil is Brazil’s great producer. In addition, soap phase residue or palm oil neutralization sludge (PONS), a byproduct of the neutralization step of the chemical refinement of palm oil, is produced, posing a huge problem for waste disposal and management in the production process of refined palm oil (RPO). In this context, this work aims to systematically investigate the economic analysis of the thermal–catalytic process of crude palm oil (CPO) and palm oil neutralization sludge (PONS). The thermocatalytic processes of CPO and PONS carried out at pilot scale and their economic feasibility were analyzed. The yields of biofuels produced by fractional distillation were also presented. The physicochemical properties of CPO and PONS, as well as those of organic liquid products obtained by the thermal–catalytic process of CPO and PONS were taken into account in the economic analysis. In addition, the chemical composition organic liquid products obtained by thermal–catalytic process of CPO and PONS, as well as its distillation fractions (green gasoline, green kerosene, green light diesel and heavy diesel), used as key factors/indicators on the economic analysis. The analysis of the key factors/indicators from the thermocatalytic processes of CPO and PONS showed economic viability for both crude palm oil (Elaeis guineensis, Jacq) and palm oil neutralization sludge. The minimum fuel selling price (MFSP) obtained in this work for the biofuels was 1.59 USD/L using crude palm oil (CPO) and 1.34 USD/L using palm oil neutralization sludge (PONS). The best breakeven point obtained was of 1.24 USD/L considering the PONS. The sensibility analysis demonstrated that the pyrolysis and distillation yields are the most important variables that affect the minimum fuel-selling price (MFSP) in both economic analyses
    corecore