15,479 research outputs found
Parsing as Reduction
We reduce phrase-representation parsing to dependency parsing. Our reduction
is grounded on a new intermediate representation, "head-ordered dependency
trees", shown to be isomorphic to constituent trees. By encoding order
information in the dependency labels, we show that any off-the-shelf, trainable
dependency parser can be used to produce constituents. When this parser is
non-projective, we can perform discontinuous parsing in a very natural manner.
Despite the simplicity of our approach, experiments show that the resulting
parsers are on par with strong baselines, such as the Berkeley parser for
English and the best single system in the SPMRL-2014 shared task. Results are
particularly striking for discontinuous parsing of German, where we surpass the
current state of the art by a wide margin
Selective Attention for Context-aware Neural Machine Translation
Despite the progress made in sentence-level NMT, current systems still fall
short at achieving fluent, good quality translation for a full document. Recent
works in context-aware NMT consider only a few previous sentences as context
and may not scale to entire documents. To this end, we propose a novel and
scalable top-down approach to hierarchical attention for context-aware NMT
which uses sparse attention to selectively focus on relevant sentences in the
document context and then attends to key words in those sentences. We also
propose single-level attention approaches based on sentence or word-level
information in the context. The document-level context representation, produced
from these attention modules, is integrated into the encoder or decoder of the
Transformer model depending on whether we use monolingual or bilingual context.
Our experiments and evaluation on English-German datasets in different document
MT settings show that our selective attention approach not only significantly
outperforms context-agnostic baselines but also surpasses context-aware
baselines in most cases.Comment: Accepted at NAACL-HLT 201
New Internal Stress Driven on-Chip Micromachines for Extracting Mechanical Properties of Thin Films
A new concept of micromachines has been developed for measuring the
mechanical properties of thin metallic films. The actuator is a beam undergoing
large internal stresses built up during the deposition process. Al thin films
are deposited partly on the actuator beam and on the substrate. By etching the
structure, the actuator contracts and pulls the Al film. Full stress strain
curves can be generated by designing a set of micromachines with various
actuator lengths. In the present study, the displacements have been measured by
scanning electronic microscopy. The stress is derived from simple continuum
mechanics relationships. The tensile properties of Al films of various
thicknesses have been tested. A marked increase of the strength with decreasing
film thickness is observed.Comment: Submitted on behalf of TIMA Editions
(http://irevues.inist.fr/tima-editions
Discovery Is Never By Chance: Designing for (Un)Serendipity
Serendipity has a long tradition in the history of science as having played a key role in many significant discoveries. Computer scientists, valuing the role of serendipity in discovery, have attempted to design systems that encourage serendipity. However, that research has focused primarily on only one aspect of serendipity: that of chance encounters. In reality, for serendipity to be valuable chance encounters must be synthesized into insight. In this paper we show, through a formal consideration of serendipity and analysis of how various systems have seized on attributes of interpreting serendipity, that there is a richer space for design to support serendipitous creativity, innovation and discovery than has been tapped to date. We discuss how ideas might be encoded to be shared or discovered by ‘association-hunting’ agents. We propose considering not only the inventor’s role in perceiving serendipity, but also how that inventor’s perception may be enhanced to increase the opportunity for serendipity. We explore the role of environment and how we can better enable serendipitous discoveries to find a home more readily and immediately
- …