8 research outputs found

    Realization of a strongly interacting Bose-Fermi mixture from a two-component Fermi gas

    Full text link
    We show the emergence of a strongly interacting Bose-Fermi mixture from a two-component Fermi mixture with population imbalance. By analyzing in situ density profiles of 6^6Li atoms in the BCS-BEC crossover regime we identify a critical interaction strength, beyond which all minority atoms pair up with majority atoms, and form a Bose condensate. This is the regime where the system can be effectively described as a boson-fermion mixture. We determine the dimer-fermion and dimer-dimer scattering lengths and beyond-mean-field contributions. Our study realizes a Gedanken experiment of bosons immersed in a Fermi sea of one of their constituents, revealing the composite nature of the bosons.Comment: 5 pages, 5 figure

    Determination of the Superfluid Gap in Atomic Fermi Gases by Quasiparticle Spectroscopy

    Full text link
    We present majority and minority radiofrequency (RF) spectra of strongly interacting imbalanced Fermi gases of Li-6. We observed a smooth evolution in the nature of pairing correlations from pairing in the superfluid region to polaron binding in the highly polarized normal region. The imbalance induces quasiparticles in the superfluid region even at very low temperature. This leads to a local bimodal spectral response, which allows us to determine the superfluid gap \Delta and the Hartree energy U.Comment: 5 pages, 4 figures (appendix: 3 pages, 5 figures

    Determination of the Fermion Pair Size in a Resonantly Interacting Superfluid

    Full text link
    Fermionic superfluidity requires the formation of pairs. The actual size of these fermion pairs varies by orders of magnitude from the femtometer scale in neutron stars and nuclei to the micrometer range in conventional superconductors. Many properties of the superfluid depend on the pair size relative to the interparticle spacing. This is expressed in BCS-BEC crossover theories, describing the crossover from a Bardeen-Cooper-Schrieffer (BCS) type superfluid of loosely bound and large Cooper pairs to Bose-Einstein condensation (BEC) of tightly bound molecules. Such a crossover superfluid has been realized in ultracold atomic gases where high temperature superfluidity has been observed. The microscopic properties of the fermion pairs can be probed with radio-frequency (rf) spectroscopy. Previous work was difficult to interpret due to strong and not well understood final state interactions. Here we realize a new superfluid spin mixture where such interactions have negligible influence and present fermion-pair dissociation spectra that reveal the underlying pairing correlations. This allows us to determine the spectroscopic pair size in the resonantly interacting gas to be 2.6(2)/kF (kF is the Fermi wave number). The pairs are therefore smaller than the interparticle spacing and the smallest pairs observed in fermionic superfluids. This finding highlights the importance of small fermion pairs for superfluidity at high critical temperatures. We have also identified transitions from fermion pairs into bound molecular states and into many-body bound states in the case of strong final state interactions.Comment: 8 pages, 7 figures; Figures updated; New Figures added; Updated discussion of fit function

    Direct Observation of the Superfluid Phase Transition in Ultracold Fermi Gases

    Full text link
    Water freezes into ice, atomic spins spontaneously align in a magnet, liquid helium becomes superfluid: Phase transitions are dramatic phenomena. However, despite the drastic change in the system's behaviour, observing the transition can sometimes be subtle. The hallmark of Bose-Einstein condensation (BEC) and superfluidity in trapped, weakly interacting Bose gases is the sudden appearance of a dense central core inside a thermal cloud. In strongly interacting gases, such as the recently observed fermionic superfluids, this clear separation between the superfluid and the normal parts of the cloud is no longer given. Condensates of fermion pairs could be detected only using magnetic field sweeps into the weakly interacting regime. The quantitative description of these sweeps presents a major theoretical challenge. Here we demonstrate that the superfluid phase transition can be directly observed by sudden changes in the shape of the clouds, in complete analogy to the case of weakly interacting Bose gases. By preparing unequal mixtures of the two spin components involved in the pairing, we greatly enhance the contrast between the superfluid core and the normal component. Furthermore, the non-interacting wings of excess atoms serve as a direct and reliable thermometer. Even in the normal state, strong interactions significantly deform the density profile of the majority spin component. We show that it is these interactions which drive the normal-to-superfluid transition at the critical population imbalance of 70(5)%.Comment: 16 pages (incl. Supplemental Material), 5 figure

    Observation of Fermi Polarons in a Tunable Fermi Liquid of Ultracold Atoms

    No full text
    We have observed Fermi polarons, dressed spin-down impurities in a spin-up Fermi sea of ultracold atoms. The polaron manifests itself as a narrow peak in the impurities’ rf spectrum that emerges from a broad incoherent background. We determine the polaron energy and the quasiparticle residue for various interaction strengths around a Feshbach resonance. At a critical interaction, we observe the transition from polaronic to molecular binding. Here, the imbalanced Fermi liquid undergoes a phase transition into a Bose liquid, coexisting with a Fermi sea.National Science FoundationAlfred P. Sloan FoundationAFOSR-MUR

    Management and prognostic markers in patients with autoimmune encephalitis requiring ICU treatment

    No full text
    Objective To assess intensive care unit (ICU) complications, their management, and prognostic factors associated with outcomes in a cohort of patients with autoimmune encephalitis (AE). Methods This study was an observational multicenter registry of consecutively included patients diagnosed with AE requiring Neuro-ICU treatment between 2004 and 2016 from 18 tertiary hospitals. Logistic regression models explored the influence of complications, their management, and diagnostic findings on the dichotomized (0-3 vs 4-6) modified Rankin Scale score at hospital discharge. Results Of 120 patients with AE (median age 43 years [interquartile range 24-62]; 70 females), 101 developed disorders of consciousness, 54 autonomic disturbances, 42 status epilepticus, and 39 severe sepsis. Sixty-eight patients were mechanically ventilated, 85 patients had detectable neuronal autoantibodies, and 35 patients were seronegative. Worse neurologic outcome at hospital discharge was associated with necessity of mechanical ventilation (sex- and age-adjusted OR 6.28; 95% CI, 2.71-15.61) tracheostomy (adjusted OR 6.26; 95% CI, 2.68-15.73), tumor (adjusted OR 3.73; 95% CI, 1.35-11.57), sepsis (adjusted OR 4.54; 95% CI, 1.99-10.43), or autonomic dysfunction (adjusted OR 2.91; 95% CI, 1.24-7.3). No significant association was observed with autoantibody type, inflammatory changes in CSF, or pathologic MRI. Conclusion In patients with AE, mechanical ventilation, sepsis, and autonomic dysregulation appear to indicate longer or incomplete convalescence. Classic ICU complications better serve as prognostic markers than the individual subtype of AE. Increased awareness and effective management of these AE-related complications are warranted, and further prospective studies are needed to confirm our findings and to develop specific strategies for outcome improvement

    Phase diagram of a two-component Fermi gas with resonant interactions

    No full text
    The pairing of fermions is at the heart of superconductivity and superfluidity. The recent experimental realization of strongly interacting atomic Fermi gases has opened a new, controllable way to study novel forms of pairing and superfluidity. A major controversial issue has been the stability of superfluidity against an imbalance between the two spin components when the fermions interact resonantly. Here we present the phase diagram of a spin-polarized Fermi gas of 6^6Li atoms at unitarity, mapping out the superfluid phase versus temperature and density imbalance. Using tomographic techniques, we reveal spatial discontinuities in the spin polarization, the signature of a first-order superfluid-to-normal phase transition, which disappears at a tricritical point where the nature of the phase transition changes from first-order to second-order. At zero temperature, there is a quantum phase transition from a fully-paired superfluid to a partially-polarized normal gas. These observations and the implementation of an in situ ideal gas thermometer provide quantitative tests of theoretical calculations on the stability of resonant superfluidity.Comment: 8 pages, 8 figures, reference added, typo correcte
    corecore