2,777 research outputs found

    Parsing as Reduction

    Full text link
    We reduce phrase-representation parsing to dependency parsing. Our reduction is grounded on a new intermediate representation, "head-ordered dependency trees", shown to be isomorphic to constituent trees. By encoding order information in the dependency labels, we show that any off-the-shelf, trainable dependency parser can be used to produce constituents. When this parser is non-projective, we can perform discontinuous parsing in a very natural manner. Despite the simplicity of our approach, experiments show that the resulting parsers are on par with strong baselines, such as the Berkeley parser for English and the best single system in the SPMRL-2014 shared task. Results are particularly striking for discontinuous parsing of German, where we surpass the current state of the art by a wide margin

    Selective Attention for Context-aware Neural Machine Translation

    Full text link
    Despite the progress made in sentence-level NMT, current systems still fall short at achieving fluent, good quality translation for a full document. Recent works in context-aware NMT consider only a few previous sentences as context and may not scale to entire documents. To this end, we propose a novel and scalable top-down approach to hierarchical attention for context-aware NMT which uses sparse attention to selectively focus on relevant sentences in the document context and then attends to key words in those sentences. We also propose single-level attention approaches based on sentence or word-level information in the context. The document-level context representation, produced from these attention modules, is integrated into the encoder or decoder of the Transformer model depending on whether we use monolingual or bilingual context. Our experiments and evaluation on English-German datasets in different document MT settings show that our selective attention approach not only significantly outperforms context-agnostic baselines but also surpasses context-aware baselines in most cases.Comment: Accepted at NAACL-HLT 201
    • …
    corecore