20,757 research outputs found

    Adaptive Probability Theory: Human Biases as an Adaptation

    Get PDF
    Humans make mistakes in our decision-making and probability judgments. While the heuristics used for decision-making have been explained as adaptations that are both efficient and fast, the reasons why people deal with probabilities using the reported biases have not been clear. We will see that some of these biases can be understood as heuristics developed to explain a complex world when little information is available. That is, they approximate Bayesian inferences for situations more complex than the ones in laboratory experiments and in this sense might have appeared as an adaptation to those situations. When ideas as uncertainty and limited sample sizes are included in the problem, the correct probabilities are changed to values close to the observed behavior. These ideas will be used to explain the observed weight functions, the violations of coalescing and stochastic dominance reported in the literature

    Morse index and multiplicity of min-max minimal hypersurfaces

    Full text link
    The Min-max Theory for the area functional, started by Almgren in the early 1960s and greatly improved by Pitts in 1981, was left incomplete because it gave no Morse index estimate for the min-max minimal hypersurface. We advance the theory further and prove the first general Morse index bounds for minimal hypersurfaces produced by it. We also settle the multiplicity problem for the classical case of one-parameter sweepouts.Comment: Cambridge Journal of Mathematics, 4 (4), 463-511, 201

    A Generalized Sznajd Model

    Full text link
    In the last decade the Sznajd Model has been successfully employed in modeling some properties and scale features of both proportional and majority elections. We propose a new version of the Sznajd model with a generalized bounded confidence rule - a rule that limits the convincing capability of agents and that is essential to allow coexistence of opinions in the stationary state. With an appropriate choice of parameters it can be reduced to previous models. We solved this new model both in a mean-field approach (for an arbitrary number of opinions) and numerically in a Barabasi-Albert network (for three and four opinions), studying the transient and the possible stationary states. We built the phase portrait for the special cases of three and four opinions, defining the attractors and their basins of attraction. Through this analysis, we were able to understand and explain discrepancies between mean-field and simulation results obtained in previous works for the usual Sznajd Model with bounded confidence and three opinions. Both the dynamical system approach and our generalized bounded confidence rule are quite general and we think it can be useful to the understanding of other similar models.Comment: 19 pages with 8 figures. Submitted to Physical Review
    • …
    corecore