127 research outputs found

    Conjoint Control of Hippocampal Place Cell Firing by Two Visual Stimuli: II. a Vector-Field Theory That Predicts Modifications of the Representation of the Environment

    Get PDF
    Changing the angular separation between two visual stimuli attached to the wall of a recording cylinder causes the firing fields of place cells to move relative to each other, as though the representation of the floor undergoes a topological distortion. The displacement of the firing field center of each cell is a vector whose length is equal to the linear displacement and whose angle indicates the direction that the field center moves in the environment. Based on the observation that neighboring fields move in similar ways, whereas widely separated fields tend to move relative to each other, we develop an empirical vector-field model that accounts for the stated effects of changing the card separation. We then go on to show that the same vector-field equation predicts additional aspects of the experimental results. In one example, we demonstrate that place cell firing fields undergo distortions of shape after the card separation is changed, as though different parts of the same field are affected by the stimulus constellation in the same fashion as fields at different locations. We conclude that the vector-field formalism reflects the organization of the place-cell representation of the environment for the current case, and through suitable modification may be very useful for describing motions of firing patterns induced by a wide variety of stimulus manipulations

    Navigating clues to success in academia

    Get PDF
    Academic success and how to achieve it takes diverse forms, depending on who’s asked. We suggest that happiness, impact, and longevity can be achieved with professional effort and support that balances the toil and joys of one’s chosen path.<br/

    From Analog to Digital Computing: Is Homo sapiens’ Brain on Its Way to Become a Turing Machine?

    Get PDF
    The abstract basis of modern computation is the formal description of a finite state machine, the Universal Turing Machine, based on manipulation of integers and logic symbols. In this contribution to the discourse on the computer-brain analogy, we discuss the extent to which analog computing, as performed by the mammalian brain, is like and unlike the digital computing of Universal Turing Machines. We begin with ordinary reality being a permanent dialog between continuous and discontinuous worlds. So it is with computing, which can be analog or digital, and is often mixed. The theory behind computers is essentially digital, but efficient simulations of phenomena can be performed by analog devices; indeed, any physical calculation requires implementation in the physical world and is therefore analog to some extent, despite being based on abstract logic and arithmetic. The mammalian brain, comprised of neuronal networks, functions as an analog device and has given rise to artificial neural networks that are implemented as digital algorithms but function as analog models would. Analog constructs compute with the implementation of a variety of feedback and feedforward loops. In contrast, digital algorithms allow the implementation of recursive processes that enable them to generate unparalleled emergent properties. We briefly illustrate how the cortical organization of neurons can integrate signals and make predictions analogically. While we conclude that brains are not digital computers, we speculate on the recent implementation of human writing in the brain as a possible digital path that slowly evolves the brain into a genuine (slow) Turing machine

    Stress-Induced Out-of-Context Activation of Memory

    Get PDF
    An intensely stressful experience can itself activate memories that are unrelated to the stressful experience. This previously unknown property of stress could help explain how traumatic memories become pathological

    Ensemble Place Codes in Hippocampus: CA1, CA3, and Dentate Gyrus Place Cells Have Multiple Place Fields in Large Environments

    Get PDF
    Previously we reported that the hippocampus place code must be an ensemble code because place cells in the CA1 region of hippocampus have multiple place fields in a more natural, larger-than-standard enclosure with stairs that permitted movements in 3-D. Here, we further investigated the nature of hippocampal place codes by characterizing the spatial firing properties of place cells in the CA1, CA3, and dentate gyrus (DG) hippocampal subdivisions as rats foraged in a standard 76-cm cylinder as well as a larger-than-standard box (1.8 m×1.4 m) that did not have stairs or any internal structure to permit movements in 3-D. The rats were trained to forage continuously for 1 hour using computer-controlled food delivery. We confirmed that most place cells have single place fields in the standard cylinder and that the positional firing pattern remapped between the cylinder and the large enclosure. Importantly, place cells in the CA1, CA3 and DG areas all characteristically had multiple place fields that were irregularly spaced, as we had reported previously for CA1. We conclude that multiple place fields are a fundamental characteristic of hippocampal place cells that simplifies to a single field in sufficiently small spaces. An ensemble place code is compatible with these observations, which contradict any dedicated coding scheme

    Minocycline Synergizes with N-Acetylcysteine and Improves Cognition and Memory Following Traumatic Brain Injury in Rats

    Get PDF
    Background: There are no drugs presently available to treat traumatic brain injury (TBI). A variety of single drugs have failed clinical trials suggesting a role for drug combinations. Drug combinations acting synergistically often provide the greatest combination of potency and safety. The drugs examined (minocycline (MINO), N-acetylcysteine (NAC), simvastatin, cyclosporine A, and progesterone) had FDA-approval for uses other than TBI and limited brain injury in experimental TBI models. Methodology/Principal Findings: Drugs were dosed one hour after injury using the controlled cortical impact (CCI) TBI model in adult rats. One week later, drugs were tested for efficacy and drug combinations tested for synergy on a hierarchy of behavioral tests that included active place avoidance testing. As monotherapy, only MINO improved acquisition of the massed version of active place avoidance that required memory lasting less than two hours. MINO-treated animals, however, were impaired during the spaced version of the same avoidance task that required 24-hour memory retention. Coadministration of NAC with MINO synergistically improved spaced learning. Examination of brain histology 2 weeks after injury suggested that MINO plus NAC preserved white, but not grey matter, since lesion volume was unaffected, yet myelin loss was attenuated. When dosed 3 hours before injury, MINO plus NAC as single drugs had no effect on interleukin-1 formation; together they synergistically lowered interleukin-1 levels. This effect on interleukin-1 was not observed when th
    corecore