2 research outputs found

    Real-Time Control of Distributed Batteries with Blockchain-Enabled Market Export Commitments

    Get PDF
    Recent years have seen a surge of interest in distributed residential batteries for households with renewable generation. Yet, assuring battery assets are profitable for their owners requires a complex optimisation of the battery asset and additional revenue sources, such as novel ways to access wholesale energy markets. In this paper, we propose a framework in which wholesale market bids are placed on forward energy markets by an aggregator of distributed residential batteries that are controlled in real time by a novel Home Energy Management System (HEMS) control algorithm to meet the market commitments, while maximising local self-consumption. The proposed framework consists of three stages. In the first stage, an optimal day-ahead or intra-day scheduling of the aggregated storage assets is computed centrally. For the second stage, a bidding strategy is developed for wholesale energy markets. Finally, in the third stage, a novel HEMS real-time control algorithm based on a smart contract allows coordination of residential batteries to meet the market commitments and maximise self-consumption of local production. Using a case study provided by a large U.K.-based energy demonstrator, we apply the framework to an aggregator with 70 residential batteries. Experimental analysis is done using real per minute data for demand and production. Results indicate that the proposed approach increases the aggregator's revenues by 35% compared to a case without residential flexibility, and increases the self-consumption rate of the households by a factor of two. The robustness of the results to uncertainty, forecast errors and to communication latency is also demonstrated.Algorithmic

    Peer-to-peer, community self-consumption, and transactive energy: A systematic literature review of local energy market models

    No full text
    Peer-to-peer, community or collective self-consumption, and transactive energy markets offer new models for trading energy locally. Over the past five years, there has been significant growth in the amount of academic literature examining how these local energy markets might function. This systematic literature review of 139 peer-reviewed journal articles examines the market designs used in these energy trading models. A modified version of the Business Ecosystem Architecture Modelling framework is used to extract market model information from the literature, and to identify differences and similarities between the models. This paper examines how peer-to-peer, community self-consumption and transactive energy markets are described in current literature. It explores the similarities and differences between these markets in terms of participation, governance structure, topology, and design. This paper systematises peer-to-peer, community self-consumption and transactive energy market designs, identifying six archetypes. Finally, it identifies five evidence gaps which require future research before these markets could be widely adopted. These evidence gaps are the lack of: consideration of physical constraints; a holistic approach to market design and operation; consideration about how these market designs will scale; consideration of information security; and, consideration of market participant privacy.Algorithmic
    corecore