67 research outputs found

    Theoretical Study of Spectroscopic Properties of Dimethoxy- p

    No full text

    Excited-state localization and energy transfer in pyrene core dendrimers with fluorene/carbazole as the dendrons and acetylene as the linkages

    No full text
    A multi-leveled theoretical investigation combining TD-DFT (B3LYP and CAM-B3LYP) methods and a semi-empirical method was conducted to determine the structure-related spectral properties of T-series dendrimers composed of nearly hundreds of atoms, based on a proposed molecular model. Both one-and two-photon absorption spectra of the dendrimer molecules were well reproduced. The "antenna effect" in the dendrimers molecule was theoretically studied. The process of excitation energy localization from chromophores in the branches to the pyrene core before the fluorescence emission was visualized using contours of the charge different density (CDD) between the electronic states. Conclusions based on the theoretical model were drawn about the observed photophysical properties of T-series dendrimers as follows: (a) increasing the generation of a branch would enhance the absorption of photons with a wavelength below 430 nm; (b) enlarging the conjugation of branches would enhance the coupling among the chromophores and would lower the excitation energy; (c) the existence of inter-molecular coupling among the "antenna" chromophores in conjugated branches and the pyrene core would significantly promote two-photon absorption

    Light-induced excitation energy redistribution in Spirulina platensis cells: “spillover” or “mobile PBSs”?

    Get PDF
    AbstractState transitions induced by light and redox were investigated by observing the 77 K fluorescence spectra for the intact cells of Spirulina platensis. To clarify if phycobilisomes (PBSs) take part in the state transition, the contributions of PBSs to light-induced state transition were studied in untreated cells and the cells treated by betaine which fixed PBSs firmly on the thylakoid membranes. It was observed that the betaine-treated cells did not show any light-induced state transition. This result definitely confirmed that the light-induced excitation energy regulation between the two photosystems is mainly dependent on a spatial movement of PBSs on the thylakoid membranes, which makes PBS cores partially decoupled from photosystem II (PSII) while PBS rods more strongly coupled with photosystem I (PSI) during the transition from state 1 to state 2. On the other hand, an energy exchange between the two photosystems was observed in both untreated and betaine-treated cells during redox-induced state transition. These observations suggested that two different mechanisms were involved in the light-induced state transition and the redox-induced one. The former involves only a physical movement of PBSs, while the latter involves not only the movement of PBS but also energy spillover from PSII to PSI. A model for light-induced state transition was proposed based on the current results as well as well known knowledge
    corecore