9,823 research outputs found
Quantum transport properties of two-dimensional systems in disordered magnetic fields with a fixed sign
Quantum transport in disordered magnetic fields is investigated numerically
in two-dimensional systems. In particular, the case where the mean and the
fluctuation of disordered magnetic fields are of the same order is considered.
It is found that in the limit of weak disorder the conductivity exhibits a
qualitatively different behavior from that in the conventional random magnetic
fields with zero mean. The conductivity is estimated by the equation of motion
method and by the two-terminal Landauer formula. It is demonstrated that the
conductance stays on the order of even in the weak disorder limit. The
present behavior can be interpreted in terms of the Drude formula. The
Shubnikov-de Haas oscillation is also observed in the weak disorder regime.Comment: 6 pages, 7 figures, to appear in Phys. Rev.
Origin of the anomalous magnetic circular dichroism spectral shape in ferromagnetic (Ga,Mn)As: Impurity bands inside the band gap
The electronic structure of a prototype dilute magnetic semiconductor (DMS),
Ga1-xMnxAs, is studied by magnetic circular dichroism (MCD) spectroscopy. We
prove that the optical transitions originated from impurity bands cause the
strong positive MCD background. The MCD signal due to the E0 transition from
the valence band to the conduction band is negative indicating that the p-d
exchange interactions between the p-carriers and d-spin is antiferromagnetic.
The negative E0 MCD signal also indicates that the hole-doping of the valence
band is not so large as previously assumed. The impurity bands seem to play
important roles for the ferromagnetism of Ga1-xMnxAs.Comment: 13 pages, 3 figure
Electron Interactions and Scaling Relations for Optical Excitations in Carbon Nanotubes
Recent fluorescence spectroscopy experiments on single wall carbon nanotubes
reveal substantial deviations of observed absorption and emission energies from
predictions of noninteracting models of the electronic structure. Nonetheless,
the data for nearly armchair nanotubes obey a nonlinear scaling relation as a
function the tube radius . We show that these effects can be understood in a
theory of large radius tubes, derived from the theory of two dimensional
graphene where the coulomb interaction leads to a logarithmic correction to the
electronic self energy and marginal Fermi liquid behavior. Interactions on
length scales larger than the tube circumference lead to strong self energy and
excitonic effects that compete and nearly cancel so that the observed optical
transitions are dominated by the graphene self energy effects.Comment: 4 page
Parity-violating asymmetry in with a pionless effective theory
Nuclear parity violation is studied with polarized neutrons in the
photodisintegration of the deuteron at low energies. A pionless effective field
theory with di-baryon fields is used for the investigation. Hadronic weak
interactions are treated by parity-violating di-baryon-nucleon-nucleon
vertices, which have undetermined coupling contants. A parity-violating
asymmetry in the process is calculated for the incident photon energy up to 30
MeV. If experimental data for the parity-violating asymmetry become available
in the future, we will be able to determine the unknown coupling contants in
the parity-violating vertices.Comment: 4 pages. A contribution to APFB2011, August 22-26, 2011, Seoul, Kore
Metal-to-Insulator Crossover in the Low-Temperature Normal State of Bi_{2}Sr_{2-x}La_{x}CuO_{6+\delta}
We measure the normal-state in-plane resistivity of La-doped Bi-2201 single
crystals at low temperatures by suppressing superconductivity with 60-T pulsed
magnetic fields. With decreasing hole doping, we observe a crossover from a
metallic to insulating behavior in the low-temperature normal state. This
crossover is estimated to occur near 1/8 doping, well inside the underdoped
regime, and not at optimum doping as reported for other cuprates. The
insulating regime is marked by a logarithmic temperature dependence of the
resistivity over two decades of temperature, suggesting that a peculiar charge
localization is common to the cuprates.Comment: 4 pages, 5 figures, accepted for publication in PR
Conductance of Disordered Wires with Symplectic Symmetry: Comparison between Odd- and Even-Channel Cases
The conductance of disordered wires with symplectic symmetry is studied by
numerical simulations on the basis of a tight-binding model on a square lattice
consisting of M lattice sites in the transverse direction. If the potential
range of scatterers is much larger than the lattice constant, the number N of
conducting channels becomes odd (even) when M is odd (even). The average
dimensionless conductance g is calculated as a function of system length L. It
is shown that when N is odd, the conductance behaves as g --> 1 with increasing
L. This indicates the absence of Anderson localization. In the even-channel
case, the ordinary localization behavior arises and g decays exponentially with
increasing L. It is also shown that the decay of g is much faster in the
odd-channel case than in the even-channel case. These numerical results are in
qualitative agreement with existing analytic theories.Comment: 4 page
Scanning Tunneling Spectroscopy of Bi2Sr2CuO6+d: New Evidence for the Common Origin of the Pseudogap and Superconductivity
Using scanning tunneling spectroscopy, we investigated the temperature dependence of the quasiparticle density of states of overdoped Bi2Sr2CuO6+δ between 275 mK and 82 K. Below Tc = 10 K, the spectra show a gap with well-defined coherence peaks at ±Δp≃12 meV, which disappear at Tc. Above Tc, the spectra display a clear pseudogap of the same magnitude, gradually filling up and vanishing at T*≃68 K. The comparison with Bi2Sr2CaCu2O8+δ demonstrates that the pseudogap and the superconducting gap scale with each other, providing strong evidence that they have a common origin
Parity-violating nucleon-nucleon interaction from different approaches
Two-pion exchange parity-violating nucleon-nucleon interactions from recent
effective field theories and earlier fully covariant approaches are
investigated. The potentials are compared with the idea to obtain better
insight on the role of low-energy constants appearing in the effective field
theory approach and the convergence of this one in terms of a perturbative
series. The results are illustrated by considering the longitudinal asymmetry
of polarized protons scattering off protons, , and the
asymmetry of the photon emission in radiative capture of polarized neutrons by
protons, .Comment: 31 page
Enhancement of the spin pumping efficiency by spin-wave mode selection
The spin pumping efficiency of lateral standing spin wave modes in a
rectangular YIG/Pt sample has been investigated by means of the inverse
spin-Hall effect (ISHE). The standing spin waves drive spin pumping, the
generation of spin currents from magnetization precession, into the Pt layer
which is converted into a detectable voltage due to the ISHE. We discovered
that the spin pumping efficiency is significantly higher for lateral standing
surface spin waves rather than for volume spin wave modes. The results suggest
that the use of higher-mode surface spin waves allows for the fabrication of an
efficient spin-current injector
- …