16 research outputs found

    Auckland : the north shore busway evaluation

    Get PDF
    Paper presented at the 21st Annual South African Transport Conference 15 - 18 July 2002 "Towards building capacity and accelerating delivery", CSIR International Convention Centre, Pretoria, South Africa.This study is one of the few, if not the only, projects in New Zealand where a major public transport facility has been proposed that relied on the provision of road infrastructure. Clearly, had the Busway been proposed as a dedicated public transport facility, it would never have met the funding criteria of Transfund. However, the introduction of HOV vehicles brought the carriageway component into Transfund’s arena, and the Busway component ‘piggy backed’ on that, but used improvements to existing and future bus passengers, coupled with ‘decongestion’ benefits to justify the additional expenditure on station linkages and facilities. As a consequence, the analysis was much more complicated than a standard project evaluation, different objectives of the stake-holders also added to the complexity, and the division of work between two consultants did not make the analysis any easier, although it probably gave confidence in the results because of the need for consistency. The analysis technique, although not the study team’s first choice, proved adequate for this project, but by its nature, it is difficult to use in areas which are rapidly expanding. Forecasting of public transport trips relies on growth factor techniques which do not adequately deal with new public transport corridors or developing areas where there are no present day services. Following the presentation of the results to Infrastructure Auckland in November 2001 over NZ$50 million (R245 million) funds have been approved towards implementation for this BRT project.This paper was transferred from the original CD ROM created for this conference. The material on the CD ROM was published using Adobe Acrobat technology. The original CD ROM was produced by Document Transformation Technologies Postal Address: PO Box 560 Irene 0062 South Africa. Tel.: +27 12 667 2074 Fax: +27 12 667 2766 E-mail: [email protected] URL: http://www.doctech.co.z

    Predicting severity and intrahospital mortality in CovID-19: The place and role of oxidative stress

    No full text
    SARS-CoV-2 virus causes infection which led to a global pandemic in 2020 with the development of severe acute respiratory syndrome. Therefore, this study was aimed at examining its possible role in predicting severity and intrahospital mortality of COVID-19, alongside with other laboratory and biochemical procedures, clinical signs, symptoms, and comorbidity. This study, approved by the Ethical Committee of Clinical Center Kragujevac, was designed as an observational prospective cross-sectional clinical study which was conducted on 127 patients with diagnosed respiratory COVID-19 viral infection from April to August 2020. The primary goals were to determine the predictors of COVID-19 severity and to determine the predictors of the negative outcome of COVID-19 infection. All patients were divided into three categories: patients with a mild form, moderate form, and severe form of COVID-19 infection. All biochemical and laboratory procedures were done on the first day of the hospital admission. Respiratory (p < 0:001) and heart (p = 0:002) rates at admission were significantly higher in patients with a severe form of COVID-19. From all observed hematological and inflammatory markers, only white blood cell count (9:43 ± 4:62, p = 0:001) and LDH (643:13 ± 313:3, p = 0:002) were significantly higher in the severe COVID-19 group. We have observed that in the severe form of SARS-CoV-2, the levels of superoxide anion radicals were substantially higher than those in two other groups (11:3 ± 5:66, p < 0:001) and the nitric oxide level was significantly lower in patients with the severe disease (2:66 ± 0:45, p < 0:001). Using a linear regression model, TA, anosmia, ageusia, O2-, and the duration at the ICU are estimated as predictors of severity of SARS-CoV-2 disease. The presence of dyspnea and a higher heart rate were confirmed as predictors of a negative, fatal outcome. Results from our study show that presence of hypertension, anosmia, and ageusia, as well as the duration of ICU stay, and serum levels of O2- are predictors of COVID-19 severity, while the presence of dyspnea and an increased heart rate on admission were predictors of COVID-19 mortality

    BIOLOGICAL ACTIVITIES OF DIFFERENT EXTRACTS FROM ALLIUM URSINUM LEAVES

    No full text
    The aim of our study was to evaluate and compare antioxidant and antimicrobial activity of aqueous, methanol and chloroform extracts of leaves of Allium ursinum (A. ursinum). Total phenol (TPC) and flavonoid (TFC) content in extracts and antioxidant activity using DPPH (1,1- diphenyl-2-picrylhydrazyl) assay were determined spectrophotometrically. In vitro antimicrobial activity was tested by microdilution method. The highest TPC and TFC were observed for chloroform extract. The extracts showed different degrees of antimicrobial activity. The intensity of antimicrobial action varied depending on the group of microorganism and the type of extracts. Our results demonstrated rational basis for the traditional uses of A. ursinum in alleviation of oxidative stress and against various pathogenic microorganisms

    Fungal planet description sheets: 1112\u20131181

    Get PDF
    Novel species of fungi described in this study include those from various countries as follows: Australia, Austroboletus asper on soil, Cylindromonium alloxyli on leaves of Alloxylon pinnatum, Davidhawksworthia quintiniae on leaves of Quintinia sieberi, Exophiala prostantherae on leaves of Prostanthera sp., Lactifluus lactiglaucus on soil, Linteromyces quintiniae (incl. Linteromyces gen. nov.) on leaves of Quintinia sieberi, Lophotrichus medusoides from stem tissue of Citrus garrawayi, Mycena pulchra on soil, Neocalonectria tristaniopsidis (incl. Neocalonectria gen. nov.) and Xyladictyochaeta tristaniopsidis on leaves of Tristaniopsis collina, Parasarocladium tasmanniae on leaves of Tasmannia insipida, Phytophthora aquae-cooljarloo from pond water, Serendipita whamiae as endophyte from roots of Eriochilus cucullatus, Veloboletus limbatus (incl. Veloboletus gen. nov.) on soil. Austria, Cortinarius glaucoelotus on soil. Bulgaria, Suhomyces rilaensis from the gut of Bolitophagus interruptus found on a Polyporus sp. Canada, Cantharellus betularum among leaf litter of Betula, Penicillium saanichii from house dust. Chile, Circinella lampensis on soil, Exophiala embothrii from rhizosphere of Embothrium coccineum. China, Colletotrichum cycadis on leaves of Cycas revoluta. Croatia, Phialocephala melitaea on fallen branch of Pinus halepensis. Czech Republic, Geoglossum jirinae on soil, Pyrenochaetopsis rajhradensis from dead wood of Buxus sempervirens. Dominican Republic, Amanita domingensis on litter of deciduous wood, Melanoleuca dominicana on forest litter. France, Crinipellis nigrolamellata (Martinique) on leaves of Pisonia fragrans, Talaromyces pulveris from bore dust of Xestobium rufovillosum infesting floorboards. French Guiana, Hypoxylon hepaticolor on dead corticated branch. Great Britain, Inocybe ionolepis on soil. India, Cortinarius indopurpurascens among leaf litter of Quercus leucotrichophora. Iran, Pseudopyricularia javanii on infected leaves of Cyperus sp., Xenomonodictys iranica (incl. Xenomonodictys gen. nov.) on wood of Fagus orientalis. Italy, Penicillium vallebormidaense from compost. Namibia, Alternaria mirabibensis on plant litter, Curvularia moringae and Moringomyces phantasmae (incl. Moringomyces gen. nov.) on leaves and flowers of Moringa ovalifolia, Gobabebomyces vachelliae (incl. Gobabebomyces gen. nov.) on leaves of Vachellia erioloba, Preussia procaviae on dung of Procavia capensis. Pakistan, Russula shawarensis from soil on forest floor. Russia, Cyberlindnera dauci from Daucus carota. South Africa, Acremonium behniae on leaves of Behnia reticulata, Dothiora aloidendri and Hantamomyces aloidendri (incl. Hantamomyces gen. nov.) on leaves of Aloidendron dichotomum, Endoconidioma euphorbiae on leaves of Euphorbia mauritanica, Eucasphaeria proteae on leaves of Protea neriifolia, Exophiala mali from inner fruit tissue of Malus sp., Graminopassalora geissorhizae on leaves of Geissorhiza splendidissima, Neocamarosporium leipoldtiae on leaves of Leipoldtia schultzii, Neocladosporium osteospermi on leaf spots of Osteospermum moniliferum, Neometulocladosporiella seifertii on leaves of Combretum caffrum, Paramyrothecium pituitipietianum on stems of Grielum humifusum, Phytopythium paucipapillatum from roots of Vitis sp., Stemphylium carpobroti and Verrucocladosporium carpobroti on leaves of Carpobrotus quadrifolius, Suttonomyces cephalophylli on leaves of Cephalophyllum pilansii. Sweden, Coprinopsis rubra on cow dung, Elaphomyces nemoreus from deciduous woodlands. Spain, Polyscytalum pini-canariensis on needles of Pinus canariensis, Pseudosubramaniomyces septatus from stream sediment, Tuber lusitanicum on soil under Quercus suber. Thailand, Tolypocladium flavonigrum on Elaphomyces sp. USA, Chaetothyrina spondiadis on fruits of Spondias mombin, Gymnascella minnisii from bat guano, Juncomyces patwiniorum on culms of Juncus effusus, Moelleriella puertoricoensis on scale insect, Neodothiora populina (incl. Neodothiora gen. nov.) on stem cankers of Populus tremuloides, Pseudogymnoascus palmeri from cave sediment. Vietnam, Cyphellophora vietnamensis on leaf litter, Tylopilus subotsuensis on soil in montane evergreen broadleaf forest. Morphological and culture characteristics are supported by DNA barcodes

    Fungal Planet description sheets: 1112–1181

    No full text
    Novel species of fungi described in this study include those from various countries as follows: Australia, Austroboletus asper on soil, Cylindromonium alloxyli on leaves of Alloxylon pinnatum, Davidhawksworthia quintiniae on leaves of Quintinia sieberi, Exophiala prostantherae on leaves of Prostanthera sp., Lactifluus lactiglaucus on soil, Linteromyces quintiniae (incl. Linteromyces gen. nov.) on leaves of Quintinia sieberi, Lophotrichus medusoides from stem tissue of Citrus garrawayi, Mycena pulchra on soil, Neocalonectria tristaniopsidis (incl. Neocalonectria gen. nov.)and Xyladictyochaeta tristaniopsidis on leaves of Tristaniopsis collina, Parasarocladium tasmanniae on leaves of Tasmannia insipida, Phytophthora aquae-cooljarloo from pond water, Serendipita whamiae as endophyte from roots of Eriochilus cucullatus, Veloboletus limbatus (incl. Veloboletus gen. nov.)onsoil. Austria, Cortinarius glaucoelotus onsoil. Bulgaria, Suhomyces rilaensis from the gut of Bolitophagus interruptus found on a Polyporus sp. Canada, Cantharellus betularum among leaf litter of Betula, Penicillium saanichii from house dust. Chile, Circinella lampensis on soil, Exophiala embothrii from rhizosphere of Embothrium coccineum. China, Colletotrichum cycadis on leaves of Cycas revoluta. Croatia, Phialocephala melitaea on fallen branch of Pinus halepensis. Czech Republic, Geoglossum jirinae on soil, Pyrenochaetopsis rajhradensis from dead wood of Buxus sempervirens. Dominican Republic, Amanita domingensis on litter of deciduous wood, Melanoleuca dominicana on forest litter. France, Crinipellis nigrolamellata (Martinique) on leaves of Pisonia fragrans, Talaromyces pulveris from bore dust of Xestobium rufovillosum infesting floorboards. French Guiana, Hypoxylon hepaticolor on dead corticated branch. Great Britain, Inocybe ionolepis on soil. India, Cortinarius indopurpurascens among leaf litter of Quercus leucotrichophora. Iran, Pseudopyricularia javanii on infected leaves of Cyperus sp., Xenomonodictys iranica (incl. Xenomonodictys gen. nov.) on wood of Fagus orientalis. Italy, Penicillium vallebormidaense from compost. Namibia, Alternaria mirabibensis on plant litter, Curvularia moringae and Moringomyces phantasmae (incl. Moringomyces gen. nov.) on leaves and flowers of Moringa ovalifolia, Gobabebomyces vachelliae (incl. Gobabebomyces gen. nov.) on leaves of Vachellia erioloba, Preussia procaviae on dung of Procavia capensis. Pakistan, Russula shawarensis from soil on forest floor. Russia, Cyberlindnera dauci from Daucus carota. South Africa, Acremonium behniae on leaves of Behnia reticulata, Dothiora aloidendri and Hantamomyces aloidendri (incl. Hantamomyces gen. nov.) on leaves of Aloidendron dichotomum, Endoconidioma euphorbiae on leaves of Euphorbia mauritanica , Eucasphaeria proteae on leaves of Protea neriifolia , Exophiala mali from inner fruit tissue of Malus sp., Graminopassalora geissorhizae on leaves of Geissorhiza splendidissima, Neocamarosporium leipoldtiae on leaves of Leipoldtia schultzii, Neocladosporium osteospermi on leaf spots of Osteospermum moniliferum, Neometulocladosporiella seifertii on leaves of Combretum caffrum, Paramyrothecium pituitipietianum on stems of Grielum humifusum, Phytopythium paucipapillatum from roots of Vitis sp., Stemphylium carpobroti and Verrucocladosporium carpobroti on leaves of Carpobrotus quadrifolius, Suttonomyces cephalophylli on leaves of Cephalophyllum pilansii. Sweden, Coprinopsis rubra on cow dung, Elaphomyces nemoreus fromdeciduouswoodlands. Spain, Polyscytalum pini-canariensis on needles of Pinus canariensis, Pseudosubramaniomyces septatus from stream sediment, Tuber lusitanicum on soil under Quercus suber. Thailand, Tolypocladium flavonigrum on Elaphomyces sp. USA, Chaetothyrina spondiadis on fruits of Spondias mombin, Gymnascella minnisii from bat guano, Juncomyces patwiniorum on culms of Juncus effusus, Moelleriella puertoricoensis on scale insect, Neodothiora populina (incl. Neodothiora gen. nov.) on stem cankers of Populus tremuloides, Pseudogymnoascus palmeri fromcavesediment. Vietnam, Cyphellophora vietnamensis on leaf litter, Tylopilus subotsuensis on soil in montane evergreen broadleaf forest. Morphological and culture characteristics are supported by DNA barcodes
    corecore