20,974 research outputs found
Geometry and observables in (2+1)-gravity
We review the geometrical properties of vacuum spacetimes in (2+1)-gravity
with vanishing cosmological constant. We explain how these spacetimes are
characterised as quotients of their universal cover by holonomies. We explain
how this description can be used to clarify the geometrical interpretation of
the fundamental physical variables of the theory, holonomies and Wilson loops.
In particular, we discuss the role of Wilson loop observables as the generators
of the two fundamental transformations that change the geometry of
(2+1)-spacetimes, grafting and earthquake. We explain how these variables can
be determined from realistic measurements by an observer in the spacetime.Comment: Talk given at 2nd School and Workshop on Quantum Gravity and Quantum
Geometry (Corfu, September 13-20 2009); 10 pages, 13 eps figure
On ``hyperboloidal'' Cauchy data for vacuum Einstein equations and obstructions to smoothness of ``null infinity''
Various works have suggested that the Bondi--Sachs--Penrose decay conditions
on the gravitational field at null infinity are not generally representative of
asymptotically flat space--times. We have made a detailed analysis of the
constraint equations for ``asymptotically hyperboloidal'' initial data and find
that log terms arise generically in asymptotic expansions. These terms are
absent in the corresponding Bondi--Sachs--Penrose expansions, and can be
related to explicit geometric quantities. We have nevertheless shown that there
exists a large class of ``non--generic'' solutions of the constraint equations,
the evolution of which leads to space--times satisfying the
Bondi--Sachs--Penrose smoothness conditions.Comment: 8 pages, revtex styl
Residue currents associated with weakly holomorphic functions
We construct Coleff-Herrera products and Bochner-Martinelli type residue
currents associated with a tuple of weakly holomorphic functions, and show
that these currents satisfy basic properties from the (strongly) holomorphic
case, as the transformation law, the Poincar\'e-Lelong formula and the
equivalence of the Coleff-Herrera product and the Bochner-Martinelli type
residue current associated with when defines a complete intersection.Comment: 28 pages. Updated with some corrections from the revision process. In
particular, corrected and clarified some things in Section 5 and 6 regarding
products of weakly holomorphic functions and currents, and the definition of
the Bochner-Martinelli type current
A novel interplanetary communications relay
A case study of a potential Earth-Mars interplanetary communications relay, designed to ensure continuous communications, is detailed. The relay makes use of orbits based on artificial equilibrium points via the application of continuous low thrust, which allows a spacecraft to hover above the orbital plane of Mars and thus ensure communications when the planet is occulted with respect to the Earth. The artificial equilibria of two different low-thrust propulsion technologies are considered: solar electric propulsion, and a solar sail/solar electric propulsion hybrid. In the latter case it is shown that the combination of sail and solar electric propulsion may prove advantageous, but only under specific circumstances of the relay architecture suggested. The study takes into account factors such as the spacecraft's power requirements and communications band utilized to determine the mission and system architecture. A detailed contingency analysis is considered for recovering the relay after increasing periods of spacecraft motor failure, and combined with a consideration for how best to deploy the relay spacecraft to maximise propellant reserves and mission duration
Asymptotically Hyperbolic Non Constant Mean Curvature Solutions of the Einstein Constraint Equations
We describe how the iterative technique used by Isenberg and Moncrief to
verify the existence of large sets of non constant mean curvature solutions of
the Einstein constraints on closed manifolds can be adapted to verify the
existence of large sets of asymptotically hyperbolic non constant mean
curvature solutions of the Einstein constraints.Comment: 19 pages, TeX, no figure
High-Order Contamination in the Tail of Gravitational Collapse
It is well known that the late-time behaviour of gravitational collapse is
{\it dominated} by an inverse power-law decaying tail. We calculate {\it
higher-order corrections} to this power-law behaviour in a spherically
symmetric gravitational collapse. The dominant ``contamination'' is shown to
die off at late times as . This decay rate is much {\it
slower} than has been considered so far. It implies, for instance, that an
`exact' (numerical) determination of the power index to within
requires extremely long integration times of order . We show that the
leading order fingerprint of the black-hole electric {\it charge} is of order
.Comment: 12 pages, 2 figure
R-mode oscillations and rocket effect in rotating superfluid neutron stars. I. Formalism
We derive the hydrodynamical equations of r-mode oscillations in neutron
stars in presence of a novel damping mechanism related to particle number
changing processes. The change in the number densities of the various species
leads to new dissipative terms in the equations which are responsible of the
{\it rocket effect}. We employ a two-fluid model, with one fluid consisting of
the charged components, while the second fluid consists of superfluid neutrons.
We consider two different kind of r-mode oscillations, one associated with
comoving displacements, and the second one associated with countermoving, out
of phase, displacements.Comment: 10 page
Energy dependence of transverse mass spectra of kaons produced in p+p and p+pbar interactions.A compilation
The data on m_T spectra of K0S K+ and K- mesons produced in all inelastic p+p
and p+pbar interactions in the energy range sqrt(s)NN=4.7-1800GeV are compiled
and analyzed. The spectra are parameterized by a single exponential function,
dN/(m_T*dm_T)=C exp(-m_T/T), and the inverse slope parameter T is the main
object of study. The T parameter is found to be similar for K0S, K+ and K-
mesons. It increases monotonically with collision energy from T~30MeV at
sqrt(s)NN=4.7GeV to T~220MeV at sqrt(s)NN=1800GeV. The T parameter measured in
p+p and p+pbar interactions is significantly lower than the corresponding
parameter obtained for central Pb+Pb collisions at all studied energies. Also
the shape of the energy dependence of is different for central Pb+Pb
collisions and p+p(pbar) interactions.Comment: more differential analysis adde
- âŠ