60 research outputs found

    A covariant action principle for dissipative fluid dynamics: From formalism to fundamental physics

    Full text link
    We present a new variational framework for dissipative general relativistic fluid dynamics. The model extends the convective variational principle for multi-fluid systems to account for a range of dissipation channels. The key ingredients in the construction are i) the use of a lower dimensional matter space for each fluid component, and ii) an extended functional dependence for the associated volume forms. In an effort to make the concepts clear, the formalism is developed in steps with the model example of matter coupled to heat considered at each level. Thus we discuss a model for heat flow, derive the relativistic Navier-Stokes equations and discuss why the individual dissipative stress tensors need not be spacetime symmetric. We argue that the new formalism, which notably does not involve an expansion away from an assumed equilibrium state, provides a conceptual breakthrough in this area of research and provide an ambitious list of directions in which one may want to extend it in the future. This involves an exciting set of problems, relating to both applications and foundational issues.Comment: 21 pages RevTex, 3 pdf figures, matches the published version. arXiv admin note: text overlap with arXiv:1107.1005 by other author

    The nonlinear development of the relativistic two-stream instability

    Full text link
    The two-stream instability has been mooted as an explanation for a range of astrophysical applications from GRBs and pulsar glitches to cosmology. Using the first nonlinear numerical simulations of relativistic multi-species hydrodynamics we show that the onset and initial growth of the instability is very well described by linear perturbation theory. In the later stages the linear and nonlinear description match only qualitatively, and the instability does not saturate even in the nonlinear case by purely ideal hydrodynamic effects.Comment: 15 pages, 9 figure

    The dynamics of neutron star crusts: Lagrangian perturbation theory for a relativistic superfluid-elastic system

    Full text link
    The inner crust of a mature neutron star is composed of an elastic lattice of neutron-rich nuclei penetrated by free neutrons. These neutrons can flow relative to the crust once the star cools below the superfluid transition temperature. In order to model the dynamics of this system, which is relevant for a range of problems from pulsar glitches to magnetar seismology and continuous gravitational-wave emission from rotating deformed neutron stars, we need to understand general relativistic Lagrangian perturbation theory for elastic matter coupled to a superfluid component. This paper develops the relevant formalism to the level required for astrophysical applications.Comment: 31 pages, double spacing, minor typos fixe

    A Relativistic Mean Field Model for Entrainment in General Relativistic Superfluid Neutron Stars

    Full text link
    General relativistic superfluid neutron stars have a significantly more intricate dynamics than their ordinary fluid counterparts. Superfluidity allows different superfluid (and superconducting) species of particles to have independent fluid flows, a consequence of which is that the fluid equations of motion contain as many fluid element velocities as superfluid species. Whenever the particles of one superfluid interact with those of another, the momentum of each superfluid will be a linear combination of both superfluid velocities. This leads to the so-called entrainment effect whereby the motion of one superfluid will induce a momentum in the other superfluid. We have constructed a fully relativistic model for entrainment between superfluid neutrons and superconducting protons using a relativistic σ−ω\sigma - \omega mean field model for the nucleons and their interactions. In this context there are two notions of ``relativistic'': relativistic motion of the individual nucleons with respect to a local region of the star (i.e. a fluid element containing, say, an Avogadro's number of particles), and the motion of fluid elements with respect to the rest of the star. While it is the case that the fluid elements will typically maintain average speeds at a fraction of that of light, the supranuclear densities in the core of a neutron star can make the nucleons themselves have quite high average speeds within each fluid element. The formalism is applied to the problem of slowly-rotating superfluid neutron star configurations, a distinguishing characteristic being that the neutrons can rotate at a rate different from that of the protons.Comment: 16 pages, 5 figures, submitted to PR

    The dynamics of dissipative multi-fluid neutron star cores

    Full text link
    We present a Newtonian multi-fluid formalism for superfluid neutron star cores, focussing on the additional dissipative terms that arise when one takes into account the individual dynamical degrees of freedom associated with the coupled "fluids". The problem is of direct astrophysical interest as the nature of the dissipative terms can have significant impact on the damping of the various oscillation modes of the star and the associated gravitational-wave signatures. A particularly interesting application concerns the gravitational-wave driven instability of f- and r-modes. We apply the developed formalism to two specific three-fluid systems: (i) a hyperon core in which both Lambda and Sigma^- hyperons are present, and (ii) a core of deconfined quarks in the colour-flavour-locked phase in which a population of neutral K^0 kaons is present. The formalism is, however, general and can be applied to other problems in neutron-star dynamics (such as the effect of thermal excitations close to the superfluid transition temperature) as well as laboratory multi-fluid systems.Comment: RevTex, no figure

    Local magneto-shear instability in Newtonian gravity

    Full text link
    The magneto-rotational instability (MRI) - which is due to an interplay between a sheared background and the magnetic field - is commonly considered a key ingredient for developing and sustaining turbulence in the outer envelope of binary neutron star merger remnants. To assess whether (or not) the instability is active and resolved, criteria originally derived in the accretion disk literature - thus exploiting the symmetries of such systems - are often used. In this paper we discuss the magneto-shear instability as a truly local phenomenon, relaxing common symmetry assumptions on the background on top of which the instability grows. This makes the discussion well-suited for highly dynamical environments such as binary mergers. We find that - although this is somewhat hidden in the usual derivation of the MRI dispersion relation - the instability crucially depends on the assumed symmetries. Relaxing the symmetry assumptions on the background we find that the role of the magnetic field is significantly diminished, as it affects the modes' growth but does not drive it. This suggests that we should not expect the standard instability criteria to provide a faithful indication/diagnostic of what "is actually going on" in mergers. We conclude by making contact with a suitable filtering operation, as this is key to separating background and fluctuations in highly dynamical systems.Comment: 15 pages, 1 figur

    Slowly Rotating General Relativistic Superfluid Neutron Stars with Relativistic Entrainment

    Full text link
    Neutron stars that are cold enough should have two or more superfluids/supercondutors in their inner crusts and cores. The implication of superfluidity/superconductivity for equilibrium and dynamical neutron star states is that each individual particle species that forms a condensate must have its own, independent number density current and equation of motion that determines that current. An important consequence of the quasiparticle nature of each condensate is the so-called entrainment effect, i.e. the momentum of a condensate is a linear combination of its own current and those of the other condensates. We present here the first fully relativistic modelling of slowly rotating superfluid neutron stars with entrainment that is accurate to the second-order in the rotation rates. The stars consist of superfluid neutrons, superconducting protons, and a highly degenerate, relativistic gas of electrons. We use a relativistic σ\sigma - ω\omega mean field model for the equation of state of the matter and the entrainment. We determine the effect of a relative rotation between the neutrons and protons on a star's total mass, shape, and Kepler, mass-shedding limit.Comment: 30 pages, 10 figures, uses ReVTeX

    Relativistic Two-stream Instability

    Full text link
    We study the (local) propagation of plane waves in a relativistic, non-dissipative, two-fluid system, allowing for a relative velocity in the "background" configuration. The main aim is to analyze relativistic two-stream instability. This instability requires a relative flow -- either across an interface or when two or more fluids interpenetrate -- and can be triggered, for example, when one-dimensional plane-waves appear to be left-moving with respect to one fluid, but right-moving with respect to another. The dispersion relation of the two-fluid system is studied for different two-fluid equations of state: (i) the "free" (where there is no direct coupling between the fluid densities), (ii) coupled, and (iii) entrained (where the fluid momenta are linear combinations of the velocities) cases are considered in a frame-independent fashion (eg. no restriction to the rest-frame of either fluid). As a by-product of our analysis we determine the necessary conditions for a two-fluid system to be causal and absolutely stable and establish a new constraint on the entrainment.Comment: 15 pages, 2 eps-figure
    • …
    corecore