1,472 research outputs found

    ESPRIT for multidimensional general grids

    Full text link
    We present a new method for complex frequency estimation in several variables, extending the classical (1d) ESPRIT-algorithm. We also consider how to work with data sampled on non-standard domains (i.e going beyond multi-rectangles)

    Revisiting the Merit-Order Effect of Renewable Energy Sources

    Full text link
    An on-going debate in the energy economics and power market community has raised the question if energy-only power markets are increasingly failing due to growing feed-in shares from subsidized renewable energy sources (RES). The short answer to this is: No, they are not failing. Energy-based power markets are, however, facing several market distortions, namely from the gap between the electricity volume traded at day-ahead markets versus the overall electricity consumption as well as the (wrong) regulatory assumption that variable RES generation, i.e., wind and photovoltaic (PV), truly have zero marginal operation costs. In this paper we show that both effects over-amplify the well-known merit-order effect of RES power feed-in beyond a level that is explainable by underlying physical realities, i.e., thermal power plants being willing to accept negative electricity prices to be able to stay online due to considerations of wear & tear and start-stop constraints. We analyze the impacts of wind and PV power feed-in on the day-ahead market for a region that is already today experiencing significant feed-in tariff (FIT)-subsidized RES power feed-in, the EPEX German-Austrian market zone (≈ \approx\,20% FIT share). Our analysis shows that, if the necessary regulatory adaptations are taken, i.e., increasing the day-ahead market's share of overall load demand and using the true marginal costs of RES units in the merit-order, energy-based power markets can remain functional despite high RES power feed-in.Comment: Working Paper (9 pages, 11 figures, 5 tables) - Some revisions since last version (10 February 2014). (Under 2nd review for IEEE Transactions on Power Systems

    Fast algorithms and efficient GPU implementations for the Radon transform and the back-projection operator represented as convolution operators

    Full text link
    The Radon transform and its adjoint, the back-projection operator, can both be expressed as convolutions in log-polar coordinates. Hence, fast algorithms for the application of the operators can be constructed by using FFT, if data is resampled at log-polar coordinates. Radon data is typically measured on an equally spaced grid in polar coordinates, and reconstructions are represented (as images) in Cartesian coordinates. Therefore, in addition to FFT, several steps of interpolation have to be conducted in order to apply the Radon transform and the back-projection operator by means of convolutions. Both the interpolation and the FFT operations can be efficiently implemented on Graphical Processor Units (GPUs). For the interpolation, it is possible to make use of the fact that linear interpolation is hard-wired on GPUs, meaning that it has the same computational cost as direct memory access. Cubic order interpolation schemes can be constructed by combining linear interpolation steps which provides important computation speedup. We provide details about how the Radon transform and the back-projection can be implemented efficiently as convolution operators on GPUs. For large data sizes, speedups of about 10 times are obtained in relation to the computational times of other software packages based on GPU implementations of the Radon transform and the back-projection operator. Moreover, speedups of more than a 1000 times are obtained against the CPU-implementations provided in the MATLAB image processing toolbox

    Non-Convex Rank/Sparsity Regularization and Local Minima

    Full text link
    This paper considers the problem of recovering either a low rank matrix or a sparse vector from observations of linear combinations of the vector or matrix elements. Recent methods replace the non-convex regularization with â„“1\ell_1 or nuclear norm relaxations. It is well known that this approach can be guaranteed to recover a near optimal solutions if a so called restricted isometry property (RIP) holds. On the other hand it is also known to perform soft thresholding which results in a shrinking bias which can degrade the solution. In this paper we study an alternative non-convex regularization term. This formulation does not penalize elements that are larger than a certain threshold making it much less prone to small solutions. Our main theoretical results show that if a RIP holds then the stationary points are often well separated, in the sense that their differences must be of high cardinality/rank. Thus, with a suitable initial solution the approach is unlikely to fall into a bad local minima. Our numerical tests show that the approach is likely to converge to a better solution than standard â„“1\ell_1/nuclear-norm relaxation even when starting from trivial initializations. In many cases our results can also be used to verify global optimality of our method

    Grid Integration Costs of Fluctuating Renewable Energy Sources

    Full text link
    The grid integration of intermittent Renewable Energy Sources (RES) causes costs for grid operators due to forecast uncertainty and the resulting production schedule mismatches. These so-called profile service costs are marginal cost components and can be understood as an insurance fee against RES production schedule uncertainty that the system operator incurs due to the obligation to always provide sufficient control reserve capacity for power imbalance mitigation. This paper studies the situation for the German power system and the existing German RES support schemes. The profile service costs incurred by German Transmission System Operators (TSOs) are quantified and means for cost reduction are discussed. In general, profile service costs are dependent on the RES prediction error and the specific workings of the power markets via which the prediction error is balanced. This paper shows both how the prediction error can be reduced in daily operation as well as how profile service costs can be reduced via optimization against power markets and/or active curtailment of RES generation.Comment: Accepted for SUSTECH 2014, Portland, Oregon, USA, July 201

    Four-dimensional tomographic reconstruction by time domain decomposition

    Full text link
    Since the beginnings of tomography, the requirement that the sample does not change during the acquisition of one tomographic rotation is unchanged. We derived and successfully implemented a tomographic reconstruction method which relaxes this decades-old requirement of static samples. In the presented method, dynamic tomographic data sets are decomposed in the temporal domain using basis functions and deploying an L1 regularization technique where the penalty factor is taken for spatial and temporal derivatives. We implemented the iterative algorithm for solving the regularization problem on modern GPU systems to demonstrate its practical use

    Fast hyperbolic Radon transform represented as convolutions in log-polar coordinates

    Full text link
    The hyperbolic Radon transform is a commonly used tool in seismic processing, for instance in seismic velocity analysis, data interpolation and for multiple removal. A direct implementation by summation of traces with different moveouts is computationally expensive for large data sets. In this paper we present a new method for fast computation of the hyperbolic Radon transforms. It is based on using a log-polar sampling with which the main computational parts reduce to computing convolutions. This allows for fast implementations by means of FFT. In addition to the FFT operations, interpolation procedures are required for switching between coordinates in the time-offset; Radon; and log-polar domains. Graphical Processor Units (GPUs) are suitable to use as a computational platform for this purpose, due to the hardware supported interpolation routines as well as optimized routines for FFT. Performance tests show large speed-ups of the proposed algorithm. Hence, it is suitable to use in iterative methods, and we provide examples for data interpolation and multiple removal using this approach.Comment: 21 pages, 10 figures, 2 table

    Realisering av PLC-system och simulering med mikrokontroller

    Get PDF
    The purpose of this thesis with the conversion of the industrial press for centrumbrick on Höganäs Bjuf AB was to improve the security for the work- and maintenance personnel. To improve the security a new control system containing a PLC based control logic and HMI was developed. The new control system will improve the work security for the maintenance personal because the operating voltage for sensors on the machine will be lowered to 24VDC. At the same time the new control system allows new safety precautions as a two hand control to be implemented. To test the functionality of the new control system a simulation environment was developed. The simulation environment was implemented on a microcontroller of the model Arduino Mega 2560. This microcontroller was programmed to reflect the manufacturing process in a realistic way. All the software that has been used to develop the PLC program, HMI and the simulation environment is described in the report. Software that has been used is GxWorks2, iX Developer and Atmel studio
    • …
    corecore