17,185 research outputs found

    Use of Biomass From Reed Canary Grass (Phalaris Arundinacea) as Raw Material for Production of Paper Pulp and Fuel

    Get PDF
    Reed canary grass (Phalaris arundinacea) has been investigated as a potential industrial crop in Sweden and other European countries. Reed canary grass (RCG) can be used as raw-material for paper pulp or as biofuel for combustion. A new harvest method, the delayed harvesting system, was developed which makes it possible to get dry, ready to store, material. The method reduces cost and improves quality of the product. The use of RCG as an industrial crop requires a completely different quality compared to forage. The important part is the cellulose while protein and mineral nutrients are disturbing the process both as a fuel and in fibre production. Different botanical parts of the plant have different quality; it is possible to further improve quality by fractionating and processing. So far all experiments have been conducted with varieties of RCG developed for forage use. A plant breeding programme has been started aiming at varieties suitable for the new area

    Enhancement of singly and multiply strangeness in p-Pb and Pb-Pb collisions at 158A GeV/c

    Get PDF
    The idea that the reduction of the strange quark suppression in string fragmentation leads to the enhancement of strange particle yield in nucleus-nucleus collisions is applied to study the singly and multiply strange particle production in p-Pb and Pb-Pb collisions at 158A GeV/c. In this mechanism the strange quark suppression factor is related to the effective string tension, which increases in turn with the increase of the energy, of the centrality and of the mass of colliding system. The WA97 observation that the strange particle enhancement increases with the increasing of centrality and of strange quark content in multiply strange particles in Pb-Pb collisions with respect to p-Pb collisions was accounted reasonably.Comment: 8 pages, 3 PostScript figures, in Latex form. submitted to PR

    String splitting and strong coupling meson decay

    Full text link
    We study the decay of high spin mesons using the gauge/string theory correspondence. The rate of the process is calculated by studying the splitting of a macroscopic string intersecting a D-brane. The result is applied to the decay of mesons in N=4 SYM with a small number of flavors and in a gravity dual of large N QCD. In QCD the decay of high spin mesons is found to be heavily suppressed in the regime of validity of the supergravity description.Comment: 17 pages, 2 figures. V2: References added. V3: Minor correction

    Revival of quantum correlations without system-environment back-action

    Get PDF
    Revivals of quantum correlations have often been explained in terms of back-action on quantum systems by their quantum environment(s). Here we consider a system of two independently evolving qubits, each locally interacting with a classical random external field. The environments of the qubits are also independent, and there is no back-action on the qubits. Nevertheless, entanglement, quantum discord and classical correlations between the two qubits may revive in this model. We explain the revivals in terms of correlations in a classical-quantum state of the environments and the qubits. Although classical states cannot store entanglement on their own, they can play a role in storing and reviving entanglement. It is important to know how the absence of back-action, or modelling an environment as classical, affects the kind of system time evolutions one is able to describe. We find a class of global time evolutions where back-action is absent and for which there is no loss of generality in modelling the environment as classical. Finally, we show that the revivals can be connected with the increase of a parameter used to quantify non-Markovianity of the single-qubit dynamics.Comment: 8 pages, 4 figures; this version to appear in Phys. Rev.

    A detailed study of quasinormal frequencies of the Kerr black hole

    Full text link
    We compute the quasinormal frequencies of the Kerr black hole using a continued fraction method. The continued fraction method first proposed by Leaver is still the only known method stable and accurate for the numerical determination of the Kerr quasinormal frequencies. We numerically obtain not only the slowly but also the rapidly damped quasinormal frequencies and analyze the peculiar behavior of these frequencies at the Kerr limit. We also calculate the algebraically special frequency first identified by Chandrasekhar and confirm that it coincide with the n=8n=8 quasinormal frequency only at the Schwarzschild limit.Comment: REVTEX, 15 pages, 7 eps figure

    Decay widths of large-spin mesons from the non-critical string/gauge duality

    Full text link
    In this paper, we use the non-critical string/gauge duality to calculate the decay widths of large-spin mesons. Since it is believed that the string theory of QCD is not a ten dimensional theory, we expect that the non-critical versions of ten dimensional black hole backgrounds lead to better results than the critical ones. For this purpose we concentrate on the confining theories and consider two different six dimensional black hole backgrounds. We choose the near extremal AdS6 model and the near extremal KM model to compute the decay widths of large-spin mesons. Then, we present our results from these two non-critical backgrounds and compare them together with those from the critical models and experimental data.Comment: 21 pages and 3 figure

    Anti-Hyperon Enhancement through Baryon Junction Loops

    Get PDF
    The baryon junction exchange mechanism recently proposed to explain valence baryon number transport in nuclear collisions is extended to study midrapidity anti-hyperon production. Baryon junction-anti-junction (J anti-J) loops are shown to enhance anti-Lambda, anti-Xi, anti-Omega yields as well as lead to long range rapidity correlations. Results are compared to recent WA97 Pb + Pb -> Y + anti-Y + X data.Comment: 10 pages, 4 figure

    Dynamics of correlations due to a phase noisy laser

    Get PDF
    We analyze the dynamics of various kinds of correlations present between two initially entangled independent qubits, each one subject to a local phase noisy laser. We give explicit expressions of the relevant quantifiers of correlations for the general case of single-qubit unital evolution, which includes the case of a phase noisy laser. Although the light field is treated as classical, we find that this model can describe revivals of quantum correlations. Two different dynamical regimes of decay of correlations occur, a Markovian one (exponential decay) and a non-Markovian one (oscillatory decay with revivals) depending on the values of system parameters. In particular, in the non-Markovian regime, quantum correlations quantified by quantum discord show an oscillatory decay faster than that of classical correlations. Moreover, there are time regions where nonzero discord is present while entanglement is zero.Comment: 7 pages, 3 figures, accepted for publication in Phys. Scripta, special issue for CEWQO 2011 proceeding

    Hereditary Hair Changes Revealed by Analysis of Single Hair Fibres by Scanning Electron Microscopy

    Get PDF
    In many disorders with a genetic background the sparsity of scalp hairs may deter the clinician from trying to extract information from single hair fibres. Presenting a number of diverse conditions, we propose to show that simple measures can be taken in the doctor\u27s office which makes single fibre analysis a useful tool for assessment of factors involved in genetic disorders including the integument and its appendages. The paper is focussed on the utilization of the scanning electron microscope with the goal of demonstrating that pertinent information can be gained where information from transmission electron microscopy and other techniques are not immediately available
    corecore