1,887 research outputs found

    Two-point theory for the differential self-interrogation Feynman-alpha method

    Full text link
    A Feynman-alpha formula has been derived in a two region domain pertaining the stochastic differential self-interrogation (DDSI) method and the differential die-away method (DDAA). Monte Carlo simulations have been used to assess the applicability of the variance to mean through determination of the physical reaction intensities of the physical processes in the two domains. More specifically, the branching processes of the neutrons in the two regions are described by the Chapman - Kolmogorov equation, including all reaction intensities for the various processes, that is used to derive a variance to mean relation for the process. The applicability of the Feynman-alpha or variance to mean formulae are assessed in DDSI and DDAA of spent fuel configurations.Comment: 15 pages, 5 figures. Submitted to EPJ Plu

    Anthropogenic alteration of nutrient supply increases the global freshwater carbon sink

    Get PDF
    Lakes have a disproportionate effect on the global carbon (C) cycle relative to their area, mediating C transfer from land to atmosphere, and burying organic-C in their sediments. The magnitude and temporal variability of C burial is, however, poorly constrained, and the degree to which humans have influenced lake C cycling through landscape alteration has not been systematically assessed. Here, we report global and biome specific trajectories of lake C sequestration based on 516 lakes and show that some lake C burial rates (i.e., those in tropical forest and grassland biomes) have quadrupled over the last 100 years. Global lake C-sequestration (~0.12 Pg year−1) has increased by ~72 Tg year−1 since 1900, offsetting 20% of annual CO2 freshwater emissions rising to ~30% if reservoirs are included and contributing to the residual continental C sink. Nutrient availability explains ~70% of the observed increase, while rising temperatures have a minimal effect

    Vacuum polarization in the spacetime of charged nonlinear black hole

    Get PDF
    Building on general formulas obtained from the approximate renormalized effective action, the approximate stress-energy tensor of the quantized massive scalar field with arbitrary curvature coupling in the spacetime of charged black hole being a solution of coupled equations of nonlinear electrodynamics and general relativity is constructed and analysed. It is shown that in a few limiting cases, the analytical expressions relating obtained tensor to the general renormalized stress-energy tensor evaluated in the geometry of the Reissner-Nordstr\"{o}m black hole could be derived. A detailed numerical analysis with special emphasis put on the minimal coupling is presented and the results are compared with those obtained earlier for the conformally coupled field. Some novel features of the renormalized stress-energy tensor are discussed

    The curvature perturbation at second order

    Get PDF
    We give an explicit relation, up to second-order terms, between scalar-field fluctuations defined on spatially-flat slices and the curvature perturbation on uniform-density slices. This expression is a necessary ingredient for calculating observable quantities at second-order and beyond in multiple-field inflation. We show that traditional cosmological perturbation theory and the `separate universe' approach yield equivalent expressions for superhorizon wavenumbers, and in particular that all nonlocal terms can be eliminated from the perturbation-theory expressions

    Generalized dynamic reduction in finite element dynamic optimization

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76662/1/AIAA-8826-211.pd

    Applicability of the Fisher Equation to Bacterial Population Dynamics

    Full text link
    The applicability of the Fisher equation, which combines diffusion with logistic nonlinearity, to population dynamics of bacterial colonies is studied with the help of explicit analytic solutions for the spatial distribution of a stationary bacterial population under a static mask. The mask protects the bacteria from ultraviolet light. The solution, which is in terms of Jacobian elliptic functions, is used to provide a practical prescription to extract Fisher equation parameters from observations and to decide on the validity of the Fisher equation.Comment: 5 pages, 3 figs. include

    Condensation Energy and High Tc Superconductivity

    Full text link
    From an analysis of the specific heat of one of the cuprate superconductors it is shown, that even if a large part of the experimental specific heat associated with the superconducting phase transition is due to fluctuations, this part must be counted when one tries to extract the condensation energy from the data. Previous work by Chakravarty, Kee and Abrahams, where the fluctuation part was subtracted, has resulted in an incorrect estimation of the condensation energy.Comment: 4 pages, 5 encapsulated Postscript figures, uses ReVTeX.st
    • …
    corecore