1,553 research outputs found
Physical activity and menopausal symptoms in women who have received menopause-inducing cancer treatments: results from the Women's Wellness After Cancer Program.
ObjectiveThis randomized controlled trial tested a digitally-delivered whole-of-lifestyle program for women previously treated for cancer. We investigated (1) associations between self-reported physical activity (PA) and menopausal symptoms and (2) if the intervention was associated with beneficial changes in PA and menopausal symptoms.MethodsWomen were randomized to intervention (n = 142) or control (n = 138). The intervention targeted lifestyle behavior including PA. Self-reported PA (International Physical Activity Questionnaire - Short Form) and menopausal symptom (Green Climacteric Scale, GCS) data were collected at baseline, with measures repeated at 12 weeks (end of intervention) and 24 weeks (to assess sustainability). Generalized estimating equation models explored associations between PA and GCS scores. Mixed-effects generalized equation models analyzed changes within and between groups in PA and GCS scores.ResultsTotal GCS scores were 1.83 (95% CI: 0.11-3.55) and 2.72 (95% CI: 1.12-4.33) points lower in women with medium and high levels of PA, respectively, than in women with low levels of PA. Total average GCS scores were 1.02 (0.21-2.26) and 1.61 (0.34-2.87) points lower in those undertaking moderate or vigorous intensity PA, respectively. Time spent walking, and performing moderate and vigorous PA were not different between intervention and control. The average GCS decrease of 0.66 points (95% CI: 0.03-1.29; p time = 0.03) over 24 weeks was not different between groups.ConclusionThis exploratory study established a stepwise association between moderate and vigorous PA and a lower total menopausal symptom score. The intervention did not appear to increase self-reported PA in women treated for early stage breast, reproductive, and blood cancers
Reproducibility of BOLD-based functional MRI obtained at 4
Abstract: The reproducibility of activation patterns in the whole brain obtained by functional magnetic resonance imaging (fMRI) experiments at 4 Tesla was studied with a simple finger-opposition task. Six subjects performed three runs in one session, and each run was analyzed separately with the t-test as a univariate method and Fisher's linear discriminant analysis as a multivariate method. Detrending with a first-and third-order polynomial as well as logarithmic transformation as preprocessing steps for the t-test were tested for their impact on reproducibility. Reproducibility across the whole brain was studied by using scatter plots of statistical values and calculating the correlation coefficient between pairs of activation maps. In order to compare reproducibility of ''activated'' voxels across runs, subjects and models, 2% of all voxels in the brain with the highest statistical values were classified as activated. The analysis of reproducible activated voxels was performed for the whole brain and within regions of interest. We found considerable variability in reproducibility across subjects, regions of interest, and analysis methods. The t-test on the linear detrended data yielded better reproducibility than Fisher's linear discriminant analysis, and therefore seems to be a robust although conservative method. Preliminary data indicate that these modeling results may be reversed by preprocessing to reduce respiratory and cardiac physiological noise effects. The reproducibility of both the position and number of activated voxels in the sensorimotor cortex was highest, while that of the supplementary motor area was much lower, with reproducibility of the cerebellum falling in between the other two areas
Formation and Propagation of Matter Wave Soliton Trains
Attraction between atoms in a Bose-Einstein-Condensate renders the condensate
unstable to collapse. Confinement in an atom trap, however, can stabilize the
condensate for a limited number of atoms, as was observed with 7Li, but beyond
this number, the condensate collapses. Attractive condensates constrained to
one-dimensional motion are predicted to form stable solitons for which the
attractive interactions exactly compensate for the wave packet dispersion. Here
we report the formation or bright solitons of 7Li atoms created in a quasi-1D
optical trap. The solitons are created from a stable Bose-Einstein condensate
by magnetically tuning the interactions from repulsive to attractive. We
observe a soliton train, containing many solitons. The solitons are set in
motion by offsetting the optical potential and are observed to propagate in the
potential for many oscillatory cycles without spreading. Repulsive interactions
between neighboring solitons are inferred from their motion
Breakdown of Fermi-liquid theory in a cuprate superconductor
The behaviour of electrons in solids is remarkably well described by Landau's
Fermi-liquid theory, which says that even though electrons in a metal interact
they can still be treated as well-defined fermions, called ``quasiparticles''.
At low temperature, the ability of quasiparticles to transport heat is strictly
given by their ability to transport charge, via a universal relation known as
the Wiedemann-Franz law, which no material in nature has been known to violate.
High-temperature superconductors have long been thought to fall outside the
realm of Fermi-liquid theory, as suggested by several anomalous properties, but
this has yet to be shown conclusively. Here we report on the first experimental
test of the Wiedemann-Franz law in a cuprate superconductor,
(Pr,Ce)CuO. Our study reveals a clear departure from the universal law
and provides compelling evidence for the breakdown of Fermi-liquid theory in
high-temperature superconductors.Comment: 7 pages, 3 figure
Anomalous field-dependent specific heat in charge-ordered PrCaMnO and LaCaMnO
We report low temperature specific heat measurements of
PrCaMnO () and
LaCaMnO with and without applied magnetic field. An
excess specific heat, , of non-magnetic origin associated with
charge ordering is found for all the samples. A magnetic field sufficient to
induce the transition from the charge-ordered state to the ferromagnetic
metallic state does not completely remove the contribution. This
suggests that the charge ordering is not completely destroyed by a "melting"
magnetic field. In addition, the specific heat of the
PrCaMnO compounds exhibit a large contribution linear in
temperature () originating from magnetic and charge disorder.Comment: submitted to PRL 5 pages, 3 figures include
A biophysical model of cell adhesion mediated by immunoadhesin drugs and antibodies
A promising direction in drug development is to exploit the ability of
natural killer cells to kill antibody-labeled target cells. Monoclonal
antibodies and drugs designed to elicit this effect typically bind cell-surface
epitopes that are overexpressed on target cells but also present on other
cells. Thus it is important to understand adhesion of cells by antibodies and
similar molecules. We present an equilibrium model of such adhesion,
incorporating heterogeneity in target cell epitope density and epitope
immobility. We compare with experiments on the adhesion of Jurkat T cells to
bilayers containing the relevant natural killer cell receptor, with adhesion
mediated by the drug alefacept. We show that a model in which all target cell
epitopes are mobile and available is inconsistent with the data, suggesting
that more complex mechanisms are at work. We hypothesize that the immobile
epitope fraction may change with cell adhesion, and we find that such a model
is more consistent with the data. We also quantitatively describe the parameter
space in which binding occurs. Our results point toward mechanisms relating
epitope immobility to cell adhesion and offer insight into the activity of an
important class of drugs.Comment: 13 pages, 5 figure
Effects of the field modulation on the Hofstadter's spectrum
We study the effect of spatially modulated magnetic fields on the energy
spectrum of a two-dimensional (2D) Bloch electron. Taking into account four
kinds of modulated fields and using the method of direct diagonalization of the
Hamiltonian matrix, we calculate energy spectra with varying system parameters
(i.e., the kind of the modulation, the relative strength of the modulated field
to the uniform background field, and the period of the modulation) to elucidate
that the energy band structure sensitively depends on such parameters:
Inclusion of spatially modulated fields into a uniform field leads occurrence
of gap opening, gap closing, band crossing, and band broadening, resulting
distinctive energy band structure from the Hofstadter's spectrum. We also
discuss the effect of the field modulation on the symmetries appeared in the
Hofstadter's spectrum in detail.Comment: 7 pages (in two-column), 10 figures (including 2 tables
Solving Nonlinear Parabolic Equations by a Strongly Implicit Finite-Difference Scheme
We discuss the numerical solution of nonlinear parabolic partial differential
equations, exhibiting finite speed of propagation, via a strongly implicit
finite-difference scheme with formal truncation error . Our application of interest is the spreading of
viscous gravity currents in the study of which these type of differential
equations arise. Viscous gravity currents are low Reynolds number (viscous
forces dominate inertial forces) flow phenomena in which a dense, viscous fluid
displaces a lighter (usually immiscible) fluid. The fluids may be confined by
the sidewalls of a channel or propagate in an unconfined two-dimensional (or
axisymmetric three-dimensional) geometry. Under the lubrication approximation,
the mathematical description of the spreading of these fluids reduces to
solving the so-called thin-film equation for the current's shape . To
solve such nonlinear parabolic equations we propose a finite-difference scheme
based on the Crank--Nicolson idea. We implement the scheme for problems
involving a single spatial coordinate (i.e., two-dimensional, axisymmetric or
spherically-symmetric three-dimensional currents) on an equispaced but
staggered grid. We benchmark the scheme against analytical solutions and
highlight its strong numerical stability by specifically considering the
spreading of non-Newtonian power-law fluids in a variable-width confined
channel-like geometry (a "Hele-Shaw cell") subject to a given mass
conservation/balance constraint. We show that this constraint can be
implemented by re-expressing it as nonlinear flux boundary conditions on the
domain's endpoints. Then, we show numerically that the scheme achieves its full
second-order accuracy in space and time. We also highlight through numerical
simulations how the proposed scheme accurately respects the mass
conservation/balance constraint.Comment: 36 pages, 9 figures, Springer book class; v2 includes improvements
and corrections; to appear as a contribution in "Applied Wave Mathematics II
Chemical pneumonitis and subsequent reactive airways dysfunction syndrome after a single exposure to a household product: a case report
<p>Abstract</p> <p>Introduction</p> <p>Household products are usually safe to use. Adverse events arising from their use are mostly reported in patients with pre-existing atopy or pulmonary problems and usually only after a prolonged exposure to such products. We report the case of a patient with no prior problems who developed significant side effects from a single exposure to a domestic product.</p> <p>Case presentation</p> <p>A 43-year-old Caucasian American man, previously in good health, used a domestic aerosol product called 'Stand N' Seal "Spray-On" Grout Sealer' in an enclosed room in his house. The product contained n-butyl acetate (<5%), propane (10%), isobutane (<5%), C8-C9 petroleum hydrocarbon solvent (80%), a fluoropolymer resin and a solvent. Within a few hours of exposure to the sealant, he developed rapidly progressive shortness of breath and a severe non-productive cough. By the time he reached the emergency room he was severely hypoxic. A diagnosis of chemical pneumonitis was made based on the clinical scenario and the diffuse infiltrates on the computer tomography scan. With supportive therapy, his condition improved and he was discharged from the hospital. However, he continued to have symptoms of intermittent cough and shortness of breath in response to strong odours, fumes, cold air and exertion even after his chest radiograph had normalized. Three months later, bronchial hyper-responsiveness was documented by a methacholine inhalation test and a diagnosis of reactive airways dysfunction syndrome was made. The patient was started on high-dose inhaled steroids and his symptoms improved. The mechanism of toxicity and determination of the exact agent responsible is still under investigation.</p> <p>Conclusion</p> <p>A household product may still prove unsafe to use even after it has gone through vigorous testing and approval processes. Even healthy individuals are susceptible to adverse outcomes after a brief exposure. Extra precautions should be taken when using any chemical product at home.</p
Structural and doping effects in the half-metallic double perovskite CrWO
he structural, transport, magnetic and optical properties of the double
perovskite CrWO with have been studied. By
varying the alkaline earth ion on the site, the influence of steric effects
on the Curie temperature and the saturation magnetization has been
determined. A maximum K was found for SrCrWO having an almost
undistorted perovskite structure with a tolerance factor . For
CaCrWO and BaCrWO structural changes result in a strong
reduction of . Our study strongly suggests that for the double perovskites
in general an optimum is achieved only for , that is, for an
undistorted perovskite structure. Electron doping in SrCrWO by a
partial substitution of Sr by La was found to reduce both
and the saturation magnetization . The reduction of could be
attributed both to band structure effects and the Cr/W antisites induced by
doping. Band structure calculations for SrCrWO predict an energy gap in
the spin-up band, but a finite density of states for the spin-down band. The
predictions of the band structure calculation are consistent with our optical
measurements. Our experimental results support the presence of a kinetic energy
driven mechanism in CrWO, where ferromagnetism is stabilized by a
hybridization of states of the nonmagnetic W-site positioned in between the
high spin Cr-sites.Comment: 14 pages, 10 figure
- …