1,987 research outputs found
Anisotropic two-dimensional Heisenberg model by Schwinger-boson Gutzwiller projected method
Two-dimensional Heisenberg model with anisotropic couplings in the and
directions () is considered. The model is first solved in the
Schwinger-boson mean-field approximation. Then the solution is Gutzwiller
projected to satisfy the local constraint that there is only one boson at each
site. The energy and spin-spin correlation of the obtained wavefunction are
calculated for systems with up to sites by means of the
variational Monte Carlo simulation. It is shown that the antiferromagnetic
long-range order remains down to the one-dimensional limit.Comment: 15 pages RevTex3.0, 4 figures, available upon request, GWRVB8-9
SU(4) Spin-Orbital Two-Leg Ladder, Square and Triangle Lattices
Based on the generalized valence bond picture, a Schwinger boson mean field
theory is applied to the symmetric SU(4) spin-orbital systems. For a two-leg
SU(4) ladder, the ground state is a spin-orbital liquid with a finite energy
gap, in good agreement with recent numerical calculations. In two-dimensional
square and triangle lattices, the SU(4) Schwinger bosons condense at
(\pi/2,\pi/2) and (\pi/3,\pi/3), respectively. Spin, orbital, and coupled
spin-orbital static susceptibilities become singular at the wave vectors, twice
of which the bose condensation arises at. It is also demonstrated that there
are spin, orbital, and coupled spin-orbital long-range orderings in the ground
state.Comment: 5 page
Spiral phase and phase separation of the double exchange model in the large-S limit
The phase diagram of the double exchange model is studied in the large-S
limit at zero temperature in two and three dimensions. We find that the spiral
state has lower energy than the canted antiferromagnetic state in the region
between the antiferromagnetic phase and the ferromagnetic phase. At small
doping, the spiral phase is unstable against phase separation due to its
negative compressibility. When the Hund coupling is small, the system separates
into spiral regions and antiferromagnetic regions. When the Hund coupling is
large, the spiral phase disappears completely and the system separates into
ferromagnetic regions and antiferromagnetic regions.Comment: 7 pages, 3 postscript figures. To be published in Phys. Rev.
The Evidence for a Pentaquark Signal and Kinematic Reflections
Several recent experiments have reported evidence for a narrow baryon
resonance with positive strangeness () at a mass of 1.54 GeV/.
Baryons with cannot be conventional states and the reports have
thus generated much theoretical speculation about the nature of possible
baryons, including a 5-quark, or pentaquark, interpretation. We show that
narrow enhancements in the effective mass spectrum can be generated as
kinematic reflections resulting from the decay of mesons, such as the
, the and the .Comment: 4 pages, 4 figure
Born reciprocity and the 1/r potential
Many structures in nature are invariant under the transformation
(p,r)->(br,-p/b), where b is some scale factor. Born's reciprocity hypothesis
affirms that this invariance extends to the entire Hamiltonian and equations of
motion. We investigate this idea for atomic physics and galactic motion, where
one is basically dealing with a 1/r potential and the observations are very
accurate, so as to determine the scale . We find that an Hz has essentially no effect on atomic physics but
might possibly offer an explanation for galactic rotation, without invoking
dark matter.Comment: 14 pages, with 4 figures, Latex, requires epsf.tex and iop style
file
Effect of Sun and Planet-Bound Dark Matter on Planet and Satellite Dynamics in the Solar System
We apply our recent results on orbital dynamics around a mass-varying central
body to the phenomenon of accretion of Dark Matter-assumed not
self-annihilating-on the Sun and the major bodies of the solar system due to
its motion throughout the Milky Way halo. We inspect its consequences on the
orbits of the planets and their satellites over timescales of the order of the
age of the solar system. It turns out that a solar Dark Matter accretion rate
of \approx 10^-12 yr^-1, inferred from the upper limit \Delta M/M= 0.02-0.05 on
the Sun's Dark Matter content, assumed somehow accumulated during last 4.5 Gyr,
would have displaced the planets faraway by about 10^-2-10^1 au 4.5 Gyr ago.
Another consequence is that the semimajor axis of the Earth's orbit,
approximately equal to the Astronomical Unit, would undergo a secular increase
of 0.02-0.05 m yr^-1, in agreement with the latest observational determinations
of the Astronomical Unit secular increase of 0.07 +/- 0.02 m yr^-1 and 0.05 m
yr^-1. By assuming that the Sun will continue to accrete Dark Matter in the
next billions year at the same rate as in the past, the orbits of its planets
will shrink by about 10^-1-10^1 au (\approx 0.2-0.5 au for the Earth), with
consequences for their fate, especially of the inner planets. On the other
hand, lunar and planetary ephemerides set upper bounds on the secular variation
of the Sun's gravitational parameter GM which are one one order of magnitude
smaller than 10^-12 yr^-1. Dark Matter accretion on planets has, instead, less
relevant consequences for their satellites. Indeed, 4.5 Gyr ago their orbits
would have been just 10^-2-10^1 km wider than now. (Abridged)Comment: LaTex2e, 17 pages, no figures, 7 tables, 61 references. Small problem
with a reference fixed. To appear in Journal of Cosmology and Astroparticle
Physics (JCAP
An Equation of State of a Carbon-Fibre Epoxy Composite under Shock Loading
An anisotropic equation of state (EOS) is proposed for the accurate
extrapolation of high-pressure shock Hugoniot (anisotropic and isotropic)
states to other thermodynamic (anisotropic and isotropic) states for a shocked
carbon-fibre epoxy composite (CFC) of any symmetry. The proposed EOS, using a
generalised decomposition of a stress tensor [Int. J. Plasticity \textbf{24},
140 (2008)], represents a mathematical and physical generalisation of the
Mie-Gr\"{u}neisen EOS for isotropic material and reduces to this equation in
the limit of isotropy. Although a linear relation between the generalised
anisotropic bulk shock velocity and particle velocity was
adequate in the through-thickness orientation, damage softening process
produces discontinuities both in value and slope in the -
relation. Therefore, the two-wave structure (non-linear anisotropic and
isotropic elastic waves) that accompanies damage softening process was proposed
for describing CFC behaviour under shock loading. The linear relationship
- over the range of measurements corresponding to non-linear
anisotropic elastic wave shows a value of (the intercept of the
- curve) that is in the range between first and second
generalised anisotropic bulk speed of sound [Eur. Phys. J. B \textbf{64}, 159
(2008)]. An analytical calculation showed that Hugoniot Stress Levels (HELs) in
different directions for a CFC composite subject to the two-wave structure
(non-linear anisotropic elastic and isotropic elastic waves) agree with
experimental measurements at low and at high shock intensities. The results are
presented, discussed and future studies are outlined.Comment: 12 pages, 9 figure
Quantum saturation and condensation of excitons in CuO: a theoretical study
Recent experiments on high density excitons in CuO provide evidence for
degenerate quantum statistics and Bose-Einstein condensation of this nearly
ideal gas. We model the time dependence of this bosonic system including
exciton decay mechanisms, energy exchange with phonons, and interconversion
between ortho (triplet-state) and para (singlet-state) excitons, using
parameters for the excitonic decay, the coupling to acoustic and low-lying
optical phonons, Auger recombination, and ortho-para interconversion derived
from experiment. The single adjustable parameter in our model is the
optical-phonon cooling rate for Auger and laser-produced hot excitons. We show
that the orthoexcitons move along the phase boundary without crossing it (i.e.,
exhibit a ``quantum saturation''), as a consequence of the balance of entropy
changes due to cooling of excitons by phonons and heating by the non-radiative
Auger two-exciton recombination process. The Auger annihilation rate for
para-para collisions is much smaller than that for ortho-para and ortho-ortho
collisions, explaining why, under the given experimental conditions, the
paraexcitons condense while the orthoexcitons fail to do so.Comment: Revised to improve clarity and physical content 18 pages, revtex,
figures available from G. Kavoulakis, Physics Department, University of
Illinois, Urban
Cartan subalgebras in C*-algebras of Hausdorff etale groupoids
The reduced -algebra of the interior of the isotropy in any Hausdorff
\'etale groupoid embeds as a -subalgebra of the reduced
-algebra of . We prove that the set of pure states of with unique
extension is dense, and deduce that any representation of the reduced
-algebra of that is injective on is faithful. We prove that there
is a conditional expectation from the reduced -algebra of onto if
and only if the interior of the isotropy in is closed. Using this, we prove
that when the interior of the isotropy is abelian and closed, is a Cartan
subalgebra. We prove that for a large class of groupoids with abelian
isotropy---including all Deaconu--Renault groupoids associated to discrete
abelian groups--- is a maximal abelian subalgebra. In the specific case of
-graph groupoids, we deduce that is always maximal abelian, but show by
example that it is not always Cartan.Comment: 14 pages. v2: Theorem 3.1 in v1 incorrect (thanks to A. Kumjain for
pointing out the error); v2 shows there is a conditional expectation onto
iff the interior of the isotropy is closed. v3: Material (including some
theorem statements) rearranged and shortened. Lemma~3.5 of v2 removed. This
version published in Integral Equations and Operator Theor
Ferromagnetic transition in a double-exchange system
We study ferromagnetic transition in three-dimensional double-exchange model.
The influence of strong spin fluctuations on conduction electrons is described
in coherent potential approximation. In the framework of thermodynamic approach
we construct for the system "electrons (in a disordered spin configuration) +
spins" the Landau functional, from the analysis of which critical temperature
of ferromagnetic transition is calculated.Comment: 4 pages, 1 eps figure, LaTeX2e, RevTeX. References added, text
change
- …
