49 research outputs found
Phase separation and pairing in coupled chains and planes
A generalization of the model in a system of two coupled chains or
planes is studied by numerical diagonalization of small clusters. In
particular, the effect of density fluctuations between these one- or
two-dimensional coupled layerson intralayer phase separation and pairing is
analyzed. The most robust signals of superconductivity are found at quarter
filling for couplings just before the fully interlayer phase separated regime.
The possibility of an enhancement of the intralayer superconducting pairing
correlations by the interlayer couplings is investigated.Comment: 13 pages + 3 figures, available upon request, LATEX, preprint
ORNL/CCIP/93/1
Competition Between Antiferromagnetic Order and Spin-Liquid Behavior in the Two-Dimensional Periodic Anderson Model at Half-Filling
We study the two-dimensional periodic Anderson model at half-filling using
quantum Monte Carlo (QMC) techniques. The ground state undergoes a magnetic
order-disorder transition as a function of the effective exchange coupling
between the conduction and localized bands. Low-lying spin and charge
excitations are determined using the maximum entropy method to analytically
continue the QMC data. At finite temperature we find a competition between the
Kondo effect and antiferromagnetic order which develops in the localized band
through Ruderman-Kittel-Kasuya-Yosida interactions.Comment: Revtex 3.0, 10 pages + 5 figures, UCSBTH-94-2
Estimation of properties of low-lying excited states of Hubbard models : a multi-configurational symmetrized projector quantum Monte Carlo approach
We present in detail the recently developed multi-configurational symmetrized
projector quantum Monte Carlo (MSPQMC) method for excited states of the Hubbard
model. We describe the implementation of the Monte Carlo method for a
multi-configurational trial wavefunction. We give a detailed discussion of
issues related to the symmetry of the projection procedure which validates our
Monte Carlo procedure for excited states and leads naturally to the idea of
symmetrized sampling for correlation functions, developed earlier in the
context of ground state simulations. It also leads to three possible averaging
schemes. We have analyzed the errors incurred in these various averaging
procedures and discuss and detail the preferred averaging procedure for
correlations that do not have the full symmetry of the Hamiltonian. We study
the energies and correlation functions of the low-lying excited states of the
half-filled Hubbard model in 1-D. We have used this technique to study the
pair-binding energies of two holes in and systems, which compare
well the Bethe ansatz data of Fye, Martins and Scalettar. We have also studied
small clusters amenable to exact diagonalization studies in 2-D and have
reproduced their energies and correlation functions by the MSPQMC method. We
identify two ways in which a multiconfigurational trial wavefunction can lead
to a negative sign problem. We observe that this effect is not severe in 1-D
and tends to vanish with increasing system size. We also note that this does
not enhance the severity of the sign problem in two dimensions.Comment: 29 pages, 2 figures available on request, submitted to Phys. Rev.
Spin and charge dynamics of the ferromagnetic and antiferromagnetic two-dimensional half-filled Kondo lattice model
We present a detailed numerical study of spin and charge dynamics of the
two-dimensional Kondo lattice model with hopping t and exchange J. At T=0 and J
> 0, the competition between the RKKY interaction and Kondo effect triggers a
quantum phase transition between magnetically ordered and disordered
insulators: J_c/t = 1.45(5). The quasiparticle gap scales as |J|. S(q,\omega),
evolves smoothly from its strong coupling form with spin gap at q = (\pi,\pi)
to a spin wave form. At J>0, A(\vec{k},\omega) shows a dispersion relation
following that of hybridized bands. For J < J_c this feature is supplemented by
shadows thus pointing to a coexistence of Kondo screening and magnetism. For J
< 0 A(\vec{k},\omega) is similar to that of non-interacting electrons in a
staggered magnetic field. Spin, T_S, and charge, T_C, scales are defined. For
weak to intermediate couplings, T_S marks the onset of antiferromagnetic
fluctuations and follows a J^2 law. At strong couplings T_S scales as J. T_C
scales as J both at weak and strong couplings. At and slightly below T_C we
observe i) a rise in the resistivity as a function of decreasing temperature,
ii) a dip in the integrated density of states at the Fermi energy and iii) the
occurrence of hybridized bands in A(k,\omega). It is shown that in the weak
coupling limit, the charge gap of order J is of magnetic origin. The specific
heat shows a two peak structure, the low temperature peak being of magnetic
origin. Our results are compared to various mean-field theories.Comment: 30 pages, 24 figure
Fine Structure and Fractional Aharonov-Bohm Effect
We find a fine structure in the Aharonov-Bohm effect, characterized by the
appearence of a new type of periodic oscillations having smaller fractional
period and an amplitude, which may compare with the amplitude of the
conventional Aharonov-Bohm effect. Specifically, at low density or strong
coupling on a Hubbard ring can coexist along with the conventional Aaronov-Bohm
oscillations with the period equal to an integer, measured in units of the
elementary flux quantum, two additional oscillations with periods and
. The integers and are the particles number and the number of
down-spin particles, respectively. {}From a solution of the Bethe ansatz
equations for electrons located on a ring in a magnetic field we show that
the fine structure is due to electron-electron and Zeeman interactions. Our
results are valid in the dilute density limit and for an arbitrary value of the
Hubbard repulsion Comment: 40 pages (Latex,Revtex) 12 figures by request, in Technical Reports
of ISSP , Ser. A, No.2836 (1994
Scaling theory of the Mott-Hubbard metal-insulator transition in one dimension
We use the Bethe ansatz equations to calculate the charge stiffness of the one-dimensional
repulsive-interaction Hubbard model for electron densities close to the Mott
insulating value of one electron per site (), where is the ground
state energy, is the circumference of the system (assumed to have periodic
boundary conditions), and is the magnetic flux
enclosed. We obtain an exact result for the asymptotic form of
as at , which defines and yields an analytic expression for
the correlation length in the Mott insulating phase of the model as a
function of the on-site repulsion . In the vicinity of the zero temperature
critical point U=0, , we show that the charge stiffness has the
hyperscaling form , where and is a universal scaling function which we calculate. The
physical significance of in the metallic phase of the model is that it
defines the characteristic size of the charge-carrying solitons, or {\em
holons}. We construct an explicit mapping for arbitrary and of the holons onto weakly interacting spinless fermions, and use this
mapping to obtain an asymptotically exact expression for the low temperature
thermopower near the metal-insulator transition, which is a generalization to
arbitrary of a result previously obtained using a weak- coupling
approximation, and implies hole-like transport for .Comment: 34 pages, REVTEX (5 figures by request
Construction and solution of a Wannier-functions based Hamiltonian in the pseudopotential plane-wave framework for strongly correlated materials
Ab initio determination of model Hamiltonian parameters for strongly
correlated materials is a key issue in applying many-particle theoretical tools
to real narrow-band materials. We propose a self-contained calculation scheme
to construct, with an ab initio approach, and solve such a Hamiltonian. The
scheme uses a Wannier-function-basis set, with the Coulomb interaction
parameter U obtained specifically for these Wannier functions via constrained
Density functional theory (DFT) calculations. The Hamiltonian is solved by
Dynamical Mean-Field Theory (DMFT) with the effective impurity problem treated
by the Quantum Monte Carlo (QMC) method. Our scheme is based on the
pseudopotential plane-wave method, which makes it suitable for developments
addressing the challenging problem of crystal structural relaxations and
transformations due to correlation effects. We have applied our scheme to the
"charge transfer insulator" material nickel oxide and demonstrate a good
agreement with the experimental photoemission spectra
The one dimensional Kondo lattice model at partial band filling
The Kondo lattice model introduced in 1977 describes a lattice of localized
magnetic moments interacting with a sea of conduction electrons. It is one of
the most important canonical models in the study of a class of rare earth
compounds, called heavy fermion systems, and as such has been studied
intensively by a wide variety of techniques for more than a quarter of a
century. This review focuses on the one dimensional case at partial band
filling, in which the number of conduction electrons is less than the number of
localized moments. The theoretical understanding, based on the bosonized
solution, of the conventional Kondo lattice model is presented in great detail.
This review divides naturally into two parts, the first relating to the
description of the formalism, and the second to its application. After an
all-inclusive description of the bosonization technique, the bosonized form of
the Kondo lattice hamiltonian is constructed in detail. Next the
double-exchange ordering, Kondo singlet formation, the RKKY interaction and
spin polaron formation are described comprehensively. An in-depth analysis of
the phase diagram follows, with special emphasis on the destruction of the
ferromagnetic phase by spin-flip disorder scattering, and of recent numerical
results. The results are shown to hold for both antiferromagnetic and
ferromagnetic Kondo lattice. The general exposition is pedagogic in tone.Comment: Review, 258 pages, 19 figure
Search for post-merger gravitational waves from the remnant of the binary neutron star merger GW170817
In Advanced LIGO, detection and astrophysical source parameter estimation of the binary black hole merger GW150914 requires a calibrated estimate of the gravitational-wave strain sensed by the detectors. Producing an estimate from each detector's differential arm length control loop readout signals requires applying time domain filters, which are designed from a frequency domain model of the detector's gravitational-wave response. The gravitational-wave response model is determined by the detector's opto-mechanical response and the properties of its feedback control system. The measurements used to validate the model and characterize its uncertainty are derived primarily from a dedicated photon radiation pressure actuator, with cross-checks provided by optical and radio frequency references. We describe how the gravitational-wave readout signal is calibrated into equivalent gravitational-wave-induced strain and how the statistical uncertainties and systematic errors are assessed. Detector data collected over 38 calendar days, from September 12 to October 20, 2015, contain the event GW150914 and approximately 16 of coincident data used to estimate the event false alarm probability. The calibration uncertainty is less than 10% in magnitude and 10 degrees in phase across the relevant frequency band 20 Hz to 1 kHz
First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data
In Advanced LIGO, detection and astrophysical source parameter estimation of the binary black hole merger GW150914 requires a calibrated estimate of the gravitational-wave strain sensed by the detectors. Producing an estimate from each detector's differential arm length control loop readout signals requires applying time domain filters, which are designed from a frequency domain model of the detector's gravitational-wave response. The gravitational-wave response model is determined by the detector's opto-mechanical response and the properties of its feedback control system. The measurements used to validate the model and characterize its uncertainty are derived primarily from a dedicated photon radiation pressure actuator, with cross-checks provided by optical and radio frequency references. We describe how the gravitational-wave readout signal is calibrated into equivalent gravitational-wave-induced strain and how the statistical uncertainties and systematic errors are assessed. Detector data collected over 38 calendar days, from September 12 to October 20, 2015, contain the event GW150914 and approximately 16 of coincident data used to estimate the event false alarm probability. The calibration uncertainty is less than 10% in magnitude and 10 degrees in phase across the relevant frequency band 20 Hz to 1 kHz