49 research outputs found

    Phase separation and pairing in coupled chains and planes

    Full text link
    A generalization of the tJt-J model in a system of two coupled chains or planes is studied by numerical diagonalization of small clusters. In particular, the effect of density fluctuations between these one- or two-dimensional coupled layerson intralayer phase separation and pairing is analyzed. The most robust signals of superconductivity are found at quarter filling for couplings just before the fully interlayer phase separated regime. The possibility of an enhancement of the intralayer superconducting pairing correlations by the interlayer couplings is investigated.Comment: 13 pages + 3 figures, available upon request, LATEX, preprint ORNL/CCIP/93/1

    Competition Between Antiferromagnetic Order and Spin-Liquid Behavior in the Two-Dimensional Periodic Anderson Model at Half-Filling

    Full text link
    We study the two-dimensional periodic Anderson model at half-filling using quantum Monte Carlo (QMC) techniques. The ground state undergoes a magnetic order-disorder transition as a function of the effective exchange coupling between the conduction and localized bands. Low-lying spin and charge excitations are determined using the maximum entropy method to analytically continue the QMC data. At finite temperature we find a competition between the Kondo effect and antiferromagnetic order which develops in the localized band through Ruderman-Kittel-Kasuya-Yosida interactions.Comment: Revtex 3.0, 10 pages + 5 figures, UCSBTH-94-2

    Estimation of properties of low-lying excited states of Hubbard models : a multi-configurational symmetrized projector quantum Monte Carlo approach

    Get PDF
    We present in detail the recently developed multi-configurational symmetrized projector quantum Monte Carlo (MSPQMC) method for excited states of the Hubbard model. We describe the implementation of the Monte Carlo method for a multi-configurational trial wavefunction. We give a detailed discussion of issues related to the symmetry of the projection procedure which validates our Monte Carlo procedure for excited states and leads naturally to the idea of symmetrized sampling for correlation functions, developed earlier in the context of ground state simulations. It also leads to three possible averaging schemes. We have analyzed the errors incurred in these various averaging procedures and discuss and detail the preferred averaging procedure for correlations that do not have the full symmetry of the Hamiltonian. We study the energies and correlation functions of the low-lying excited states of the half-filled Hubbard model in 1-D. We have used this technique to study the pair-binding energies of two holes in 4n4n and 4n+24n+2 systems, which compare well the Bethe ansatz data of Fye, Martins and Scalettar. We have also studied small clusters amenable to exact diagonalization studies in 2-D and have reproduced their energies and correlation functions by the MSPQMC method. We identify two ways in which a multiconfigurational trial wavefunction can lead to a negative sign problem. We observe that this effect is not severe in 1-D and tends to vanish with increasing system size. We also note that this does not enhance the severity of the sign problem in two dimensions.Comment: 29 pages, 2 figures available on request, submitted to Phys. Rev.

    Spin and charge dynamics of the ferromagnetic and antiferromagnetic two-dimensional half-filled Kondo lattice model

    Full text link
    We present a detailed numerical study of spin and charge dynamics of the two-dimensional Kondo lattice model with hopping t and exchange J. At T=0 and J > 0, the competition between the RKKY interaction and Kondo effect triggers a quantum phase transition between magnetically ordered and disordered insulators: J_c/t = 1.45(5). The quasiparticle gap scales as |J|. S(q,\omega), evolves smoothly from its strong coupling form with spin gap at q = (\pi,\pi) to a spin wave form. At J>0, A(\vec{k},\omega) shows a dispersion relation following that of hybridized bands. For J < J_c this feature is supplemented by shadows thus pointing to a coexistence of Kondo screening and magnetism. For J < 0 A(\vec{k},\omega) is similar to that of non-interacting electrons in a staggered magnetic field. Spin, T_S, and charge, T_C, scales are defined. For weak to intermediate couplings, T_S marks the onset of antiferromagnetic fluctuations and follows a J^2 law. At strong couplings T_S scales as J. T_C scales as J both at weak and strong couplings. At and slightly below T_C we observe i) a rise in the resistivity as a function of decreasing temperature, ii) a dip in the integrated density of states at the Fermi energy and iii) the occurrence of hybridized bands in A(k,\omega). It is shown that in the weak coupling limit, the charge gap of order J is of magnetic origin. The specific heat shows a two peak structure, the low temperature peak being of magnetic origin. Our results are compared to various mean-field theories.Comment: 30 pages, 24 figure

    Fine Structure and Fractional Aharonov-Bohm Effect

    Full text link
    We find a fine structure in the Aharonov-Bohm effect, characterized by the appearence of a new type of periodic oscillations having smaller fractional period and an amplitude, which may compare with the amplitude of the conventional Aharonov-Bohm effect. Specifically, at low density or strong coupling on a Hubbard ring can coexist along with the conventional Aaronov-Bohm oscillations with the period equal to an integer, measured in units of the elementary flux quantum, two additional oscillations with periods 1/N1/N and M/NM/N. The integers NN and MM are the particles number and the number of down-spin particles, respectively. {}From a solution of the Bethe ansatz equations for NN electrons located on a ring in a magnetic field we show that the fine structure is due to electron-electron and Zeeman interactions. Our results are valid in the dilute density limit and for an arbitrary value of the Hubbard repulsion UUComment: 40 pages (Latex,Revtex) 12 figures by request, in Technical Reports of ISSP , Ser. A, No.2836 (1994

    Scaling theory of the Mott-Hubbard metal-insulator transition in one dimension

    Full text link
    We use the Bethe ansatz equations to calculate the charge stiffness Dc=(L/2)d2E0/dΦc2Φc=0D_{\rm c} = (L/2) d^2 E_0/d\Phi_{\rm c}^2|_{\Phi_{\rm c}=0} of the one-dimensional repulsive-interaction Hubbard model for electron densities close to the Mott insulating value of one electron per site (n=1n=1), where E0E_0 is the ground state energy, LL is the circumference of the system (assumed to have periodic boundary conditions), and (c/e)Φc(\hbar c/e)\Phi_{\rm c} is the magnetic flux enclosed. We obtain an exact result for the asymptotic form of Dc(L)D_{\rm c}(L) as LL\to \infty at n=1n=1, which defines and yields an analytic expression for the correlation length ξ\xi in the Mott insulating phase of the model as a function of the on-site repulsion UU. In the vicinity of the zero temperature critical point U=0, n=1n=1, we show that the charge stiffness has the hyperscaling form Dc(n,L,U)=Y+(ξδ,ξ/L)D_{\rm c}(n,L,U)=Y_+(\xi \delta, \xi/L), where δ=1n\delta =|1-n| and Y+Y_+ is a universal scaling function which we calculate. The physical significance of ξ\xi in the metallic phase of the model is that it defines the characteristic size of the charge-carrying solitons, or {\em holons}. We construct an explicit mapping for arbitrary UU and ξδ1\xi \delta \ll 1 of the holons onto weakly interacting spinless fermions, and use this mapping to obtain an asymptotically exact expression for the low temperature thermopower near the metal-insulator transition, which is a generalization to arbitrary UU of a result previously obtained using a weak- coupling approximation, and implies hole-like transport for 0<1nξ10<1-n\ll\xi^{-1}.Comment: 34 pages, REVTEX (5 figures by request

    Construction and solution of a Wannier-functions based Hamiltonian in the pseudopotential plane-wave framework for strongly correlated materials

    Get PDF
    Ab initio determination of model Hamiltonian parameters for strongly correlated materials is a key issue in applying many-particle theoretical tools to real narrow-band materials. We propose a self-contained calculation scheme to construct, with an ab initio approach, and solve such a Hamiltonian. The scheme uses a Wannier-function-basis set, with the Coulomb interaction parameter U obtained specifically for these Wannier functions via constrained Density functional theory (DFT) calculations. The Hamiltonian is solved by Dynamical Mean-Field Theory (DMFT) with the effective impurity problem treated by the Quantum Monte Carlo (QMC) method. Our scheme is based on the pseudopotential plane-wave method, which makes it suitable for developments addressing the challenging problem of crystal structural relaxations and transformations due to correlation effects. We have applied our scheme to the "charge transfer insulator" material nickel oxide and demonstrate a good agreement with the experimental photoemission spectra

    The one dimensional Kondo lattice model at partial band filling

    Full text link
    The Kondo lattice model introduced in 1977 describes a lattice of localized magnetic moments interacting with a sea of conduction electrons. It is one of the most important canonical models in the study of a class of rare earth compounds, called heavy fermion systems, and as such has been studied intensively by a wide variety of techniques for more than a quarter of a century. This review focuses on the one dimensional case at partial band filling, in which the number of conduction electrons is less than the number of localized moments. The theoretical understanding, based on the bosonized solution, of the conventional Kondo lattice model is presented in great detail. This review divides naturally into two parts, the first relating to the description of the formalism, and the second to its application. After an all-inclusive description of the bosonization technique, the bosonized form of the Kondo lattice hamiltonian is constructed in detail. Next the double-exchange ordering, Kondo singlet formation, the RKKY interaction and spin polaron formation are described comprehensively. An in-depth analysis of the phase diagram follows, with special emphasis on the destruction of the ferromagnetic phase by spin-flip disorder scattering, and of recent numerical results. The results are shown to hold for both antiferromagnetic and ferromagnetic Kondo lattice. The general exposition is pedagogic in tone.Comment: Review, 258 pages, 19 figure

    Search for post-merger gravitational waves from the remnant of the binary neutron star merger GW170817

    No full text
    In Advanced LIGO, detection and astrophysical source parameter estimation of the binary black hole merger GW150914 requires a calibrated estimate of the gravitational-wave strain sensed by the detectors. Producing an estimate from each detector's differential arm length control loop readout signals requires applying time domain filters, which are designed from a frequency domain model of the detector's gravitational-wave response. The gravitational-wave response model is determined by the detector's opto-mechanical response and the properties of its feedback control system. The measurements used to validate the model and characterize its uncertainty are derived primarily from a dedicated photon radiation pressure actuator, with cross-checks provided by optical and radio frequency references. We describe how the gravitational-wave readout signal is calibrated into equivalent gravitational-wave-induced strain and how the statistical uncertainties and systematic errors are assessed. Detector data collected over 38 calendar days, from September 12 to October 20, 2015, contain the event GW150914 and approximately 16 of coincident data used to estimate the event false alarm probability. The calibration uncertainty is less than 10% in magnitude and 10 degrees in phase across the relevant frequency band 20 Hz to 1 kHz

    First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    Get PDF
    In Advanced LIGO, detection and astrophysical source parameter estimation of the binary black hole merger GW150914 requires a calibrated estimate of the gravitational-wave strain sensed by the detectors. Producing an estimate from each detector's differential arm length control loop readout signals requires applying time domain filters, which are designed from a frequency domain model of the detector's gravitational-wave response. The gravitational-wave response model is determined by the detector's opto-mechanical response and the properties of its feedback control system. The measurements used to validate the model and characterize its uncertainty are derived primarily from a dedicated photon radiation pressure actuator, with cross-checks provided by optical and radio frequency references. We describe how the gravitational-wave readout signal is calibrated into equivalent gravitational-wave-induced strain and how the statistical uncertainties and systematic errors are assessed. Detector data collected over 38 calendar days, from September 12 to October 20, 2015, contain the event GW150914 and approximately 16 of coincident data used to estimate the event false alarm probability. The calibration uncertainty is less than 10% in magnitude and 10 degrees in phase across the relevant frequency band 20 Hz to 1 kHz
    corecore