1,042 research outputs found
Analytic approximation and an improved method for computing the stress-energy of quantized scalar fields in Robertson-Walker spacetimes
An improved method is given for the computation of the stress-energy tensor
of a quantized scalar field using adiabatic regularization. The method works
for fields with arbitrary mass and curvature coupling in Robertson-Walker
spacetimes and is particularly useful for spacetimes with compact spatial
sections. For massless fields it yields an analytic approximation for the
stress-energy tensor that is similar in nature to those obtained previously for
massless fields in static spacetimes.Comment: RevTeX, 8 pages, no figure
Energy-Momentum Tensor of Particles Created in an Expanding Universe
We present a general formulation of the time-dependent initial value problem
for a quantum scalar field of arbitrary mass and curvature coupling in a FRW
cosmological model. We introduce an adiabatic number basis which has the virtue
that the divergent parts of the quantum expectation value of the
energy-momentum tensor are isolated in the vacuum piece of , and
may be removed using adiabatic subtraction. The resulting renormalized
is conserved, independent of the cutoff, and has a physically transparent,
quasiclassical form in terms of the average number of created adiabatic
`particles'. By analyzing the evolution of the adiabatic particle number in de
Sitter spacetime we exhibit the time structure of the particle creation
process, which can be understood in terms of the time at which different
momentum scales enter the horizon. A numerical scheme to compute as a
function of time with arbitrary adiabatic initial states (not necessarily de
Sitter invariant) is described. For minimally coupled, massless fields, at late
times the renormalized goes asymptotically to the de Sitter invariant
state previously found by Allen and Folacci, and not to the zero mass limit of
the Bunch-Davies vacuum. If the mass m and the curvature coupling xi differ
from zero, but satisfy m^2+xi R=0, the energy density and pressure of the
scalar field grow linearly in cosmic time demonstrating that, at least in this
case, backreaction effects become significant and cannot be neglected in de
Sitter spacetime.Comment: 28 pages, Revtex, 11 embedded .ps figure
Analytical approximation of the stress-energy tensor of a quantized scalar field in static spherically symmetric spacetimes
Analytical approximations for and of a
quantized scalar field in static spherically symmetric spacetimes are obtained.
The field is assumed to be both massive and massless, with an arbitrary
coupling to the scalar curvature, and in a zero temperature vacuum state.
The expressions for and are divided into
low- and high-frequency parts. The contributions of the high-frequency modes to
these quantities are calculated for an arbitrary quantum state. As an example,
the low-frequency contributions to and are
calculated in asymptotically flat spacetimes in a quantum state corresponding
to the Minkowski vacuum (Boulware quantum state). The limits of the
applicability of these approximations are discussed.Comment: revtex4, 17 pages; v2: three references adde
Recommended from our members
Optical properties of multicomponent antimony-silver nanoclusters formed in silica by sequential ion implantation
The linear and nonlinear optical properties of nanometer dimension metal colloids embedded in a dielectric depend explicitly on the electronic structure of the metal nanoclusters. The ability to control the electronic structure of the nanoclusters may make it possible to tailor the optical properties for enhanced performance. By sequential implantation of different metal ion species multi-component nanoclusters can be formed with significantly different optical properties than single element metal nanoclusters. The authors report the formation of multi-component Sb/Ag nanoclusters in silica by sequential implantation of Sb and Ag. Samples were implanted with relative ratios of Sb to Ag of 1:1 and 3:1. A second set of samples was made by single element implantations of Ag and Sb at the same energies and doses used to make the sequentially implanted samples. All samples were characterized using RBS and both linear and nonlinear optical measurements. The presence of both ions significantly modifies the optical properties of the composites compared to the single element nanocluster glass composites. In the sequentially implanted samples the optical density is lower, and the strong surface plasmon resonance absorption observed in the Ag implanted samples is not present. At the same time the nonlinear response of the these samples is larger than for the samples implanted with Sb alone, suggesting that the addition of Ag can increase the nonlinear response of the Sb particles formed. The results are consistent with the formation of multi-component Sb/Ag colloids
Method to compute the stress-energy tensor for the massless spin 1/2 field in a general static spherically symmetric spacetime
A method for computing the stress-energy tensor for the quantized, massless,
spin 1/2 field in a general static spherically symmetric spacetime is
presented. The field can be in a zero temperature state or a non-zero
temperature thermal state. An expression for the full renormalized
stress-energy tensor is derived. It consists of a sum of two tensors both of
which are conserved. One tensor is written in terms of the modes of the
quantized field and has zero trace. In most cases it must be computed
numerically. The other tensor does not explicitly depend on the modes and has a
trace equal to the trace anomaly. It can be used as an analytic approximation
for the stress-energy tensor and is equivalent to other approximations that
have been made for the stress-energy tensor of the massless spin 1/2 field in
static spherically symmetric spacetimes.Comment: 34 pages, no figure
Smooth vortex precession in superfluid 4He
We have measured a precessing superfluid vortex line, stretched from a wire
to the wall of a cylindrical cell. By contrast to previous experiments with a
similar geometry, the motion along the wall is smooth. The key difference is
probably that our wire is substantially off center. We verify several numerical
predictions about the motion, including an asymmetry in the precession
signature, the behavior of pinning events, and the temperature dependence of
the precession.Comment: 8 pages, 8 figure
Velocity autocorrelation function of a Brownian particle
In this article, we present molecular dynamics study of the velocity
autocorrelation function (VACF) of a Brownian particle. We compare the results
of the simulation with the exact analytic predictions for a compressible fluid
from [6] and an approximate result combining the predictions from hydrodynamics
at short and long times. The physical quantities which determine the decay were
determined from separate bulk simulations of the Lennard-Jones fluid at the
same thermodynamic state point.We observe that the long-time regime of the VACF
compares well the predictions from the macroscopic hydrodynamics, but the
intermediate decay is sensitive to the viscoelastic nature of the solvent.Comment: 7 pages, 6 figure
The Dimensional-Reduction Anomaly in Spherically Symmetric Spacetimes
In D-dimensional spacetimes which can be foliated by n-dimensional
homogeneous subspaces, a quantum field can be decomposed in terms of modes on
the subspaces, reducing the system to a collection of (D-n)-dimensional fields.
This allows one to write bare D-dimensional field quantities like the Green
function and the effective action as sums of their (D-n)-dimensional
counterparts in the dimensionally reduced theory. It has been shown, however,
that renormalization breaks this relationship between the original and
dimensionally reduced theories, an effect called the dimensional-reduction
anomaly. We examine the dimensional-reduction anomaly for the important case of
spherically symmetric spaces.Comment: LaTeX, 19 pages, 2 figures. v2: calculations simplified, references
adde
- …