646 research outputs found
On the time dependent Schwarzschild - de Sitter spacetime
An imperfect cosmic fluid with energy flux is analyzed. Even though its
energy density is positive, the pressure due to the fact
that the metric is asymptotically de Sitter. The kinematical quantities for a
nongeodesic congruence are computed. The scalar expansion is time independent
but divergent at the singularity . Far from the central mass and
for a cosmic time , the heat flux does not depend on
Newton's constant .Comment: 8 pages, no figures, Sections 3 and 5 enlarged, one reference adde
How often does the Unruh-DeWitt detector click? Regularisation by a spatial profile
We analyse within first-order perturbation theory the instantaneous
transition rate of an accelerated Unruh-DeWitt particle detector whose coupling
to a massless scalar field on four-dimensional Minkowski space is regularised
by a spatial profile. For the Lorentzian profile introduced by Schlicht, the
zero size limit is computed explicitly and expressed as a manifestly finite
integral formula that no longer involves regulators or limits. The same
transition rate is obtained for an arbitrary profile of compact support under a
modified definition of spatial smearing. Consequences for the asymptotic
behaviour of the transition rate are discussed. A number of stationary and
nonstationary trajectories are analysed, recovering in particular the Planckian
spectrum for uniform acceleration.Comment: 30 pages, 1 figure. v3: Added references and minor clarification
Application of Time Transfer Function to McVittie Spacetime: Gravitational Time Delay and Secular Increase in Astronomical Unit
We attempt to calculate the gravitational time delay in a time-dependent
gravitational field, especially in McVittie spacetime, which can be considered
as the spacetime around a gravitating body such as the Sun, embedded in the
FLRW (Friedmann-Lema\^itre-Robertson-Walker) cosmological background metric. To
this end, we adopt the time transfer function method proposed by Le
Poncin-Lafitte {\it et al.} (Class. Quant. Grav. 21:4463, 2004) and Teyssandier
and Le Poncin-Lafitte (Class. Quant. Grav. 25:145020, 2008), which is
originally related to Synge's world function and enables to
circumvent the integration of the null geodesic equation. We re-examine the
global cosmological effect on light propagation in the solar system. The
round-trip time of a light ray/signal is given by the functions of not only the
spacial coordinates but also the emission time or reception time of light
ray/signal, which characterize the time-dependency of solutions. We also apply
the obtained results to the secular increase in the astronomical unit, reported
by Krasinsky and Brumberg (Celest. Mech. Dyn. Astron. 90:267, 2004), and we
show that the leading order terms of the time-dependent component due to
cosmological expansion is 9 orders of magnitude smaller than the observed value
of , i.e., ~[m/century]. Therefore, it is not possible
to explain the secular increase in the astronomical unit in terms of
cosmological expansion.Comment: 13 pages, 2 figures, accepted for publication in General Relativity
and Gravitatio
Vascular complications associated with intraaortic balloon pump supported percutaneous coronary intervention (PCI) and clinical outcomes from the British Cardiovascular Intervention Society National PCI Database.
INTRODUCTION: The impact of a vascular complication (VC) in the setting of intraaortic balloon pump (IABP) supported PCI on clinical outcomes is unclear. METHODS: Using data from the BCIS National PCI Database, multivariate logistic regression was used to identify independent predictors of a VC. Propensity scoring was used to quantify the association between a VC and outcomes. RESULTS: Between 2007 and 2014, 9,970 PCIs in England and Wales were supported by IABP (1.6% of total PCI), with 224 femoral VCs (2.3%). Annualized rates of a VC reduced as the use of radial access for PCI increased. The independent predictors of a VC included a procedural complication (odds ratio [OR] 2.9, pâ<â.001), female sex (OR 2.3, pâ<â.001), PCI for stable angina (OR 3.47, p = .028), and use of a glycoprotein inhibitor (OR 1.46 [1.1:2.5], p = .04), with a lower likelihood of a VC when radial access was used for PCI (OR 0.48, p = .008). A VC was associated with a higher likelihood of transfusion (OR 5.7 [3.5:9.2], pâ<â.0001), acute kidney injury (OR 2.6 [1.2:6.1], p = .027), and periprocedural MI (OR 3.2 [1.5:6.7], p = .002) but not with adjusted mortality at discharge (OR 1.2 [0.8:1.7], p = .394) or 12-months (OR 1.1 [0.76:1.56], p = .639). In sensitivity analyses, there was a trend towards higher mortality in patients experiencing a VC who underwent PCI for stable angina (OR 4.1 [1.0:16.4], p value for interaction .069). Discussion and Conclusions Although in-hospital morbidity was observed to be adversely affected by occurrence of a VC during IABP-supported PCI, in-hospital and 1-year survival were similar between groups
The Influences of H2Plasma Pretreatment on the Growth of Vertically Aligned Carbon Nanotubes by Microwave Plasma Chemical Vapor Deposition
The effects of H2flow rate during plasma pretreatment on synthesizing the multiwalled carbon nanotubes (MWCNTs) by using the microwave plasma chemical vapor deposition are investigated in this study. A H2and CH4gas mixture with a 9:1 ratio was used as a precursor for the synthesis of MWCNT on Ni-coated TaN/Si(100) substrates. The structure and composition of Ni catalyst nanoparticles were investigated using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The present findings showed that denser Ni catalyst nanoparticles and more vertically aligned MWCNTs could be effectively achieved at higher flow rates. From Raman results, we found that the intensity ratio of G and D bands (ID/IG) decreases with an increasing flow rate. In addition, TEM results suggest that H2plasma pretreatment can effectively reduce the amorphous carbon and carbonaceous particles. As a result, the pretreatment plays a crucial role in modifying the obtained MWCNTs structures
Donald J. Jamison Sr. v. Utah Home Fire Insurance Company : Brief of Respondent
Appeal from the Judgment of the Third Judicial District Court, Salt Lake County- Honorable Stewart M. Hanson, Jr
Detection of 16 Gamma-Ray Pulsars Through Blind Frequency Searches Using the Fermi LAT
Pulsars are rapidly-rotating, highly-magnetized neutron stars emitting
radiation across the electromagnetic spectrum. Although there are more than
1800 known radio pulsars, until recently, only seven were observed to pulse in
gamma rays and these were all discovered at other wavelengths. The Fermi Large
Area Telescope makes it possible to pinpoint neutron stars through their
gamma-ray pulsations. We report the detection of 16 gamma-ray pulsars in blind
frequency searches using the LAT. Most of these pulsars are coincident with
previously unidentified gamma-ray sources, and many are associated with
supernova remnants. Direct detection of gamma-ray pulsars enables studies of
emission mechanisms, population statistics and the energetics of pulsar wind
nebulae and supernova remnants.Comment: Corresponding authors: Michael Dormody, Paul S. Ray, Pablo M. Saz
Parkinson, Marcus Ziegle
Recommended from our members
Bioavailability in soils
The consumption of locally-produced vegetables by humans may be an important exposure pathway for soil contaminants in many urban settings and for agricultural land use. Hence, prediction of metal and metalloid uptake by vegetables from contaminated soils is an important part of the Human Health Risk Assessment procedure. The behaviour of metals (cadmium, chromium, cobalt, copper, mercury, molybdenum, nickel, lead and zinc) and metalloids (arsenic, boron and selenium) in contaminated soils depends to a large extent on the intrinsic charge, valence and speciation of the contaminant ion, and soil properties such as pH, redox status and contents of clay and/or organic matter. However, chemistry and behaviour of the contaminant in soil alone cannot predict soil-to-plant transfer. Root uptake, root selectivity, ion interactions, rhizosphere processes, leaf uptake from the atmosphere, and plant partitioning are important processes that ultimately govern the accumulation ofmetals and metalloids in edible vegetable tissues. Mechanistic models to accurately describe all these processes have not yet been developed, let alone validated under field conditions. Hence, to estimate risks by vegetable consumption, empirical models have been used to correlate concentrations of metals and metalloids in contaminated soils, soil physico-chemical characteristics, and concentrations of elements in vegetable tissues. These models should only be used within the bounds of their calibration, and often need to be re-calibrated or validated using local soil and environmental conditions on a regional or site-specific basis.Mike J. McLaughlin, Erik Smolders, Fien Degryse, and Rene Rietr
Fermi Large Area Telescope Measurements of the Diffuse Gamma-Ray Emission at Intermediate Galactic Latitudes
The diffuse Galactic gamma-ray emission is produced by cosmic rays (CRs)
interacting with the interstellar gas and radiation field. Measurements by the
Energetic Gamma-Ray Experiment Telescope (EGRET) instrument on the Compton
Gamma-Ray Observatory indicated excess gamma-ray emission > 1 GeV relative to
diffuse Galactic gamma-ray emission models consistent with directly measured CR
spectra (the so-called ``EGRET GeV excess''). The excess emission was observed
in all directions on the sky, and a variety of explanations have been proposed,
including beyond-the-Standard-Model scenarios like annihilating or decaying
dark matter. The Large Area Telescope (LAT) instrument on the Fermi Gamma-ray
Space Telescope has measured the diffuse gamma-ray emission with improved
sensitivity and resolution compared to EGRET. We report on LAT measurements of
the diffuse gamma-ray emission for energies 100 MeV to 10 GeV and Galactic
latitudes 10 deg. <= |b| <= 20 deg. The LAT spectrum for this region of the sky
is well reproduced by a diffuse Galactic gamma-ray emission model that is
consistent with local CR spectra and inconsistent with the EGRET GeV excess.Comment: 2 figures, 1 table, accepted by Physical Review Letters, available
online Dec. 18th, 200
- âŠ