1,115 research outputs found
Outcomes of endovascular treatment of ruptured abdominal aortic aneurysms
IntroductionThe successful application of endovascular techniques for the elective repair of abdominal aortic aneurysms (AAAs) has stimulated a strong interest in their possible use in dealing with a long-standing surgical challenge: the ruptured abdominal aortic aneurysm (RAAA). The use of a conventional open procedure to repair ruptured aneurysms is associated with a high operative mortality of 45% to 50%. In this study, we evaluated the current frequency of endovascular repair of RAAAs in four large states and the impact of this technique on patient outcome.MethodsWe examined discharge data sets from 2000 through 2003 from the four states of California, Florida, New Jersey, and New York, whose combined population represents almost a third of the United States population. Proportions and trends were analyzed by χ2 analysis and continuous variables by the Student’s t test.ResultsWe found that since the year 2000, endovascular repair has begun to emerge as a viable treatment option for RAAAs, accounting for the repair of 6.2% of cases in 2003. During the same period, the use of open procedures for RAAAs declined. The overall mortality rate for the 4-year period was significantly lower for endovascular vs open repair (39.3% vs. 47.7%, P = .005). Moreover, compared with open repair, endovascular repair resulted in a significantly lower rate of pulmonary, renal, and bleeding complications. Survival after endovascular repair correlated with hospital experience, as assessed by the overall volume of elective and nonelective endovascular procedures. For endovascular repairs, mortality ranged from 45.9% for small volume hospitals to 26% for large volume hospitals (P = .0011). Volume was also a determinant of mortality for open repairs, albeit to a much lesser extent (51.5% for small volume hospitals, 44.3% for large volume hospitals; P < .0001).ConclusionWe observed a benefit to using endovascular procedures for RAAAs in institutions with significant endovascular experience; however, the analysis of administrative data cannot rule out selection bias as an explanation of better outcomes. These data strongly endorse the need for prospective studies to clarify to what extent the improved survival in RAAA patients is to be attributed to the endovascular approach rather than the selection of low-risk patients
Information measures and classicality in quantum mechanics
We study information measures in quantu mechanics, with particular emphasis
on providing a quantification of the notions of classicality and
predictability. Our primary tool is the Shannon - Wehrl entropy I. We give a
precise criterion for phase space classicality and argue that in view of this
a) I provides a measure of the degree of deviation from classicality for closed
system b) I - S (S the von Neumann entropy) plays the same role in open systems
We examine particular examples in non-relativistic quantum mechanics. Finally,
(this being one of our main motivations) we comment on field classicalisation
on early universe cosmology.Comment: 35 pages, LATE
Boundary-crossing identities for diffusions having the time-inversion property
We review and study a one-parameter family of functional transformations, denoted by (S (β)) β∈ℝ, which, in the case β<0, provides a path realization of bridges associated to the family of diffusion processes enjoying the time-inversion property. This family includes Brownian motions, Bessel processes with a positive dimension and their conservative h-transforms. By means of these transformations, we derive an explicit and simple expression which relates the law of the boundary-crossing times for these diffusions over a given function f to those over the image of f by the mapping S (β), for some fixed β∈ℝ. We give some new examples of boundary-crossing problems for the Brownian motion and the family of Bessel processes. We also provide, in the Brownian case, an interpretation of the results obtained by the standard method of images and establish connections between the exact asymptotics for large time of the densities corresponding to various curves of each family
Whisker spot patterns: a noninvasive method of individual identification of Australian sea lions (Neophoca cinerea)
Reliable methods for identification of individual animals are advantageous for ecological studies of population demographics and movement patterns. Photographic identification, based on distinguishable patterns, unique shapes, or scars, is an effective technique already used for many species. We tested whether photographs of whisker spot patterns could be used to discriminate among individual Australian sea lion (Neophoca cinerea). Based on images of 53 sea lions, we simulated 5,000 patterns before calculating the probability of duplication in a study population. A total of 99% (± 1.5 SD) of patterns were considered reliable for a population of 50, 98% (± 1.7 SD) for 100, 92% (± 4.7 SD) for 500, and 88% (± 5.7 SD) for 1,000. We tested a semiautomatic approach by matching 16 known individuals at 3 different angles (70°, 90°, and 110°), 2 distances (1 and 2 m), and 6 separate times over a 1-year period. A point-pattern matching algorithm for pairwise comparisons produced 90% correct matches of photographs taken on the same day at 90°. Images of individuals at 1 and 2 m resulted in 89% correct matches, those photographed at different angles and different times (at 90°) resulted in 48% and 73% correct matches, respectively. Our results show that the Chamfer distance transform can effectively be used for individual identification, but only if there is very little variation in photograph angle. This point-pattern recognition application may also work for other otariid species
Scanning tunneling spectroscopy of high-temperature superconductors
Tunneling spectroscopy played a central role in the experimental verification
of the microscopic theory of superconductivity in the classical
superconductors. Initial attempts to apply the same approach to
high-temperature superconductors were hampered by various problems related to
the complexity of these materials. The use of scanning tunneling
microscopy/spectroscopy (STM/STS) on these compounds allowed to overcome the
main difficulties. This success motivated a rapidly growing scientific
community to apply this technique to high-temperature superconductors. This
paper reviews the experimental highlights obtained over the last decade. We
first recall the crucial efforts to gain control over the technique and to
obtain reproducible results. We then discuss how the STM/STS technique has
contributed to the study of some of the most unusual and remarkable properties
of high-temperature superconductors: the unusual large gap values and the
absence of scaling with the critical temperature; the pseudogap and its
relation to superconductivity; the unprecedented small size of the vortex cores
and its influence on vortex matter; the unexpected electronic properties of the
vortex cores; the combination of atomic resolution and spectroscopy leading to
the observation of periodic local density of states modulations in the
superconducting and pseudogap states, and in the vortex cores.Comment: To appear in RMP; 65 pages, 62 figure
Multi-level evidence of an allelic hierarchy of USH2A variants in hearing, auditory processing and speech/language outcomes.
Language development builds upon a complex network of interacting subservient systems. It therefore follows that variations in, and subclinical disruptions of, these systems may have secondary effects on emergent language. In this paper, we consider the relationship between genetic variants, hearing, auditory processing and language development. We employ whole genome sequencing in a discovery family to target association and gene x environment interaction analyses in two large population cohorts; the Avon Longitudinal Study of Parents and Children (ALSPAC) and UK10K. These investigations indicate that USH2A variants are associated with altered low-frequency sound perception which, in turn, increases the risk of developmental language disorder. We further show that Ush2a heterozygote mice have low-level hearing impairments, persistent higher-order acoustic processing deficits and altered vocalizations. These findings provide new insights into the complexity of genetic mechanisms serving language development and disorders and the relationships between developmental auditory and neural systems
The roles and values of wild foods in agricultural systems
Almost every ecosystem has been amended so that plants and animals can be used as food, fibre, fodder, medicines, traps and weapons. Historically, wild plants and animals were sole dietary components for hunter–gatherer and forager cultures. Today, they remain key to many agricultural communities. The mean use of wild foods by agricultural and forager communities in 22 countries of Asia and Africa (36 studies) is 90–100 species per location. Aggregate country estimates can reach 300–800 species (e.g. India, Ethiopia, Kenya). The mean use of wild species is 120 per community for indigenous communities in both industrialized and developing countries. Many of these wild foods are actively managed, suggesting there is a false dichotomy around ideas of the agricultural and the wild: hunter–gatherers and foragers farm and manage their environments, and cultivators use many wild plants and animals. Yet, provision of and access to these sources of food may be declining as natural habitats come under increasing pressure from development, conservation-exclusions and agricultural expansion. Despite their value, wild foods are excluded from official statistics on economic values of natural resources. It is clear that wild plants and animals continue to form a significant proportion of the global food basket, and while a variety of social and ecological drivers are acting to reduce wild food use, their importance may be set to grow as pressures on agricultural productivity increase.</jats:p
Stochastic Theory of Relativistic Particles Moving in a Quantum Field: II. Scalar Abraham-Lorentz-Dirac-Langevin Equation, Radiation Reaction and Vacuum Fluctuations
We apply the open systems concept and the influence functional formalism
introduced in Paper I to establish a stochastic theory of relativistic moving
spinless particles in a quantum scalar field. The stochastic regime resting
between the quantum and semi-classical captures the statistical mechanical
attributes of the full theory. Applying the particle-centric world-line
quantization formulation to the quantum field theory of scalar QED we derive a
time-dependent (scalar) Abraham-Lorentz-Dirac (ALD) equation and show that it
is the correct semiclassical limit for nonlinear particle-field systems without
the need of making the dipole or non-relativistic approximations. Progressing
to the stochastic regime, we derive multiparticle ALD-Langevin equations for
nonlinearly coupled particle-field systems. With these equations we show how to
address time-dependent dissipation/noise/renormalization in the semiclassical
and stochastic limits of QED. We clarify the the relation of radiation
reaction, quantum dissipation and vacuum fluctuations and the role that initial
conditions may play in producing non-Lorentz invariant noise. We emphasize the
fundamental role of decoherence in reaching the semiclassical limit, which also
suggests the correct way to think about the issues of runaway solutions and
preacceleration from the presence of third derivative terms in the ALD
equation. We show that the semiclassical self-consistent solutions obtained in
this way are ``paradox'' and pathology free both technically and conceptually.
This self-consistent treatment serves as a new platform for investigations into
problems related to relativistic moving charges.Comment: RevTex; 20 pages, 3 figures, Replaced version has corrected typos,
slightly modified derivation, improved discussion including new section with
comparisons to related work, and expanded reference
Integrative analyses identify modulators of response to neoadjuvant aromatase inhibitors in patients with early breast cancer
Introduction
Aromatase inhibitors (AIs) are a vital component of estrogen receptor positive (ER+) breast cancer treatment. De novo and acquired resistance, however, is common. The aims of this study were to relate patterns of copy number aberrations to molecular and proliferative response to AIs, to study differences in the patterns of copy number aberrations between breast cancer samples pre- and post-AI neoadjuvant therapy, and to identify putative biomarkers for resistance to neoadjuvant AI therapy using an integrative analysis approach.
Methods
Samples from 84 patients derived from two neoadjuvant AI therapy trials were subjected to copy number profiling by microarray-based comparative genomic hybridisation (aCGH, n = 84), gene expression profiling (n = 47), matched pre- and post-AI aCGH (n = 19 pairs) and Ki67-based AI-response analysis (n = 39).
Results
Integrative analysis of these datasets identified a set of nine genes that, when amplified, were associated with a poor response to AIs, and were significantly overexpressed when amplified, including CHKA, LRP5 and SAPS3. Functional validation in vitro, using cell lines with and without amplification of these genes (SUM44, MDA-MB134-VI, T47D and MCF7) and a model of acquired AI-resistance (MCF7-LTED) identified CHKA as a gene that when amplified modulates estrogen receptor (ER)-driven proliferation, ER/estrogen response element (ERE) transactivation, expression of ER-regulated genes and phosphorylation of V-AKT murine thymoma viral oncogene homolog 1 (AKT1).
Conclusions
These data provide a rationale for investigation of the role of CHKA in further models of de novo and acquired resistance to AIs, and provide proof of concept that integrative genomic analyses can identify biologically relevant modulators of AI response
- …