2,307 research outputs found
Influence of Habitat Heterogeneity on Small Mammals in the Central Platte River Valley, Nebraska
Although the loss of prairie is substantial across the extent of its historic range, large portions of native rangeland still remain throughout Nebraska. It is critical that resource managers and private landowners manage rangelands in a manner that will enhance ecosystem integrity by using techniques that provide disturbance regimes. Heterogeneity based management, such as patch-burn grazing and rest-rotation grazing, can be used as a conservation tool to increase biodiversity within management units and at a landscape level. Heterogeneity-based management has received much attention in the literature within the past decade, but there has been little focus on how these management systems influence small mammal communities. I trapped small mammals and surveyed vegetation structure among rangelands during 2009 and 2010 at the Platte River Whooping Crane Maintenance Trust in the Central Platte River Valley, Nebraska to determine the influence of structural heterogeneity on small mammals. Vertical height, litter depth, bare ground, and standing dead vegetation were different among burn units during both years. My data indicated no difference in grasses, forbs, or litter cover among burn units for either year. I used the significant variables in a direct gradient analysis to identify which variables were critical in determining small mammal species presence. The species identified with vegetation variables for 2009 but not 2010 suggested there were other variables not considered in my study. Species diversity measurements indicated the recently disturbed burn units had the lowest small mammal diversity and the undisturbed burn units had the greatest diversity. Community similarity was highest among similar burn units, which indicated that small mammal communities were similar among similar burn units during 2009 and 2010. Resource managers should recognize that alternative grazing systems that create a mosaic of vegetation structure can provide evolutionary processes necessary for prairie ecosystem function. Small mammals play a crucial role in grassland ecosystems and by using heterogeneity-based management, small mammal diversity increased which can lead to a healthier ecosystem
The momentum flux probability distribution function for ion-temperature-gradient turbulence
There has been overwhelming evidence that coherent structures play a critical role in determining the overall transport in a variety of systems. We compute the probability distribution function (PDF) tails of momentum flux and heat flux in ion-temperature-gradient turbulence, by taking into account the interaction among modons, which are assumed to be coherent structures responsible for bursty and intermittent events, contributing to the PDF tails. The tail of PDF of momentum flux R = 〈vxvy〉 is shown to be exponential with the form exp{−ξR3/2}, which is broader than a Gaussian, similar to what was found in the previous local studies. An analogous expression with the same functional dependence is found for the PDF tails of heat flux. Furthermore, we present a detailed numerical study of the dependence of the PDF tail on the temperature and density scale lengths and other physical parameters through the coefficient ξ
Intravalley Multiple Scattering of Quasiparticles in Graphene
We develop a theoretical description of intravalley scattering of
quasiparticles in graphene from multiple short-range scatterers of size much
greater than the carbon-carbon bond length. Our theory provides a method to
rapidly calculate the Green's function in graphene for arbitrary configurations
of scatterers. We demonstrate that non-collinear multiple scattering
trajectories generate pseudospin rotations that alter quasiparticle
interference, resulting in significant modifications to the shape, intensity,
and pattern of the interference fringes in the local density of states (LDOS).
We illustrate these effects via theoretical calculations of the LDOS for a
variety of scattering configurations in single layer graphene. A clear
understanding of impurity scattering in graphene is a step towards exploiting
graphene's unique properties to build future devices
Failure of Mean Field Theory at Large N
We study strongly coupled lattice QCD with colors of staggered fermions
in 3+1 dimensions. While mean field theory describes the low temperature
behavior of this theory at large , it fails in the scaling region close to
the finite temperature second order chiral phase transition. The universal
critical region close to the phase transition belongs to the 3d XY universality
class even when becomes large. This is in contrast to Gross-Neveu models
where the critical region shrinks as (the number of flavors) increases and
mean field theory is expected to describe the phase transition exactly in the
limit of infinite . Our work demonstrates that close to second order phase
transitions infrared fluctuations can sometimes be important even when is
strictly infinite.Comment: 4 pages, 3 figure
Future Opportunities and Challenges in Remote Sensing of Drought
The value of satellite remote sensing for drought monitoring was first realized more than two decades ago with the application of Normalized Difference Index (NDVI) data from the Advanced Very High Resolution Radiometer (AVHRR) for assessing the effect of drought on vegetation. Other indices such as the Vegetation Health Index (VHI) were also developed during this time period, and applied to AVHRR NDVI and brightness temperature data for routine global monitoring of drought conditions. These early efforts demonstrated the unique perspective that global imagers such as AVHRR could provide for operational drought monitoring through their near-daily, global observations of Earth's land surface. However, the advancement of satellite remote sensing of drought was limited by the relatively few spectral bands of operational global sensors such as AVHRR, along with a relatively short period of observational record. Remote sensing advancements are of paramount importance given the increasing demand for tools that can provide accurate, timely, and integrated information on drought conditions to facilitate proactive decision making (NIDIS, 2007). Satellite-based approaches are key to addressing significant gaps in the spatial and temporal coverage of current surface station instrument networks providing key moisture observations (e.g., rainfall, snow, soil moisture, ground water, and ET) over the United States and globally (NIDIS, 2007). Improved monitoring capabilities will be particularly important given increases in spatial extent, intensity, and duration of drought events observed in some regions of the world, as reported in the International Panel on Climate Change (IPCC) report (IPCC, 2007). The risk of drought is anticipated to further increase in some regions in response to climatic changes in the hydrologic cycle related to evaporation, precipitation, air temperature, and snow cover (Burke et al., 2006; IPCC, 2007; USGCRP, 2009). Numerous national, regional, and global efforts such as the Famine and Early Warning System (FEWS), National Integrated Drought Information System (NIDIS), and Group on Earth Observations (GEO), as well as the establishment of regional drought centers (e.g., European Drought Observatory) and geospatial visualization and monitoring systems (e.g, NASA SERVIR) have been undertaken to improve drought monitoring and early warning systems throughout the world. The suite of innovative remote sensing tools that have recently emerged will be looked upon to fill important data and knowledge gaps (NIDIS, 2007; NRC, 2007) to address a wide range of drought-related issues including food security, water scarcity, and human health
Future Opportunities and Challenges in Remote Sensing of Drought
The value of satellite remote sensing for drought monitoring was first realized more than two decades ago with the application of Normalized Difference Vegetation Index (NDVI) data from the Advanced Very High Resolution Radiometer (AVHRR) for assessing the effect of drought on vegetation, as summarized by Anyamba and Tucker (2012, Chapter 2). Other indices such as the Vegetation Health Index (VHI) (Kogan, 1995) were also developed during this time period and applied to AVHRR NDVI and brightness temperature data for routine global monitoring of drought conditions. These early efforts demonstrated the unique perspective that global imagers like AVHRR could provide for operational drought monitoring through near-daily, synoptic observations of earth’s land surface. However, the advancement of satellite remote sensing for drought monitoring was limited by the relatively few spectral bands on operational global sensors such as AVHRR, along with a relatively short observational record
Distal femur fractures: basic science and international perspectives
Distal femur fractures are challenging injuries to manage, and complication rates remain high. This article summarizes the international and basic science perspectives regarding distal femoral fractures that were presented at the 2022 Orthopaedic Trauma Association Annual Meeting. We review a number of critical concepts that can be considered to optimize the treatment of these difficult fractures. These include biomechanical considerations for distal femur fixation constructs, emerging treatments to prevent post-traumatic arthritis, both systemic and local biologic treatments to optimize nonunion management, the relative advantages and disadvantages of plate versus nail versus dual-implant constructs, and finally important factors which determine outcomes. A robust understanding of these principles can significantly improve success rates and minimize complications in the treatment of these challenging injuries
The Two Dimensional Kondo Model with Rashba Spin-Orbit Coupling
We investigate the effect that Rashba spin-orbit coupling has on the low
energy behaviour of a two dimensional magnetic impurity system. It is shown
that the Kondo effect, the screening of the magnetic impurity at temperatures T
< T_K, is robust against such spin-orbit coupling, despite the fact that the
spin of the conduction electrons is no longer a conserved quantity. A proposal
is made for how the spin-orbit coupling may change the value of the Kondo
temperature T_K in such systems and the prospects of measuring this change are
discussed. We conclude that many of the assumptions made in our analysis
invalidate our results as applied to recent experiments in semi-conductor
quantum dots but may apply to measurements made with magnetic atoms placed on
metallic surfaces.Comment: 22 pages, 1 figure; reference update
A Comprehensive Economic Stimulus for our Failing Economy
This paper presents a comprehensive plan to fix the ailing American economy, through a five-step approach. First, the Federal Reserve must continue to broaden the scope of monetary policy, by purchasing and selling long-term securities. Manipulating expectations through FOMC statements is another tool at the Federal Reserve’s disposal. Secondly, the government must enact fiscal stimulus to stabilize the economy in the short and medium runs, through investment in infrastructure projects, green technology, fusion technology, and science education. Additionally, the new fiscal policy must tackle the mortgage meltdown, which is weighing down the entire economy. Third, the regulatory system must be changed to reduce the likelihood of another financial collapse, starting with the nationalization of the ratings agencies. Ratings should be updated faster, with a numeric grading system rather than the pre-existing letter grades. Fourth, our globalized economy insures that a coordinated globalized response is necessary to recover. Global cooperation to reduce inflation and avoid protectionist policies is vital. Finally, the American bailout policy must be made clear, only giving bailouts to companies that are sound but financially strapped and those that are too big to fail
- …