658 research outputs found
Sudden increase of cosmic-ray intensity
A sudden 30% increase in cosmic-ray intensity lasting approximately 12 minutes was observed at an atmospheric depth equal to 80 g/cm2 by a Neher integrating ionization chamber flown from Bismarck, North Dakota on October 16, 1958. A similar measurement made simultaneously at Invercargill, New Zealand observed no increase. These observations are not in accord with the simple solar impact zone theory
Additional Ultracool White Dwarfs Found in the Sloan Digital Sky Survey
We identify seven new ultracool white dwarfs discovered in the Sloan Digital
Sky Survey (SDSS). The SDSS photometry, spectra, and proper motions are
presented, and additional BVRI data are given for these and other previously
discovered ultracool white dwarfs. The observed colors span a remarkably wide
range, qualitatively similar to colors predicted by models for very cool white
dwarfs. One of the new stars (SDSS J1251+44) exhibits strong collision-induced
absorption (CIA) in its spectra, while the spectra and colors of the other six
are consistent with mild CIA. Another of the new discoveries (SDSS J2239+00A)
is part of a binary system -- its companion is also a cool white dwarf, and
other data indicate that the companion exhibits an infrared flux deficiency,
making this the first binary system composed of two CIA white dwarfs. A third
discovery (SDSS J0310-00) has weak Balmer emission lines. The proper motions of
all seven stars are consistent with membership in the disk or thick disk.Comment: Accepted for Astrophysical Journal. 16 pages (includes 3 figures
Modeling abundance using N-mixture models: the importance of considering ecological mechanisms
Predicting abundance across a species' distribution is useful for studies of ecology and biodiversity management. Modeling of survey data in relation to environmental variables can be a powerful method for extrapolating abundances across a species' distribution and, consequently, calculating total abundances and ultimately trends. Research in this area has demonstrated that models of abundance are often unstable and produce spurious estimates, and until recently our ability to remove detection error limited the development of accurate models. The N-mixture model accounts for detection and abundance simultaneously and has been a significant advance in abundance modeling. Case studies that have tested these new models have demonstrated success for some species, but doubt remains over the appropriateness of standard N-mixture models for many species. Here we develop the N-mixture model to accommodate zero-inflated data, a common occurrence in ecology, by employing zero-inflated count models. To our knowledge, this is the first application of this method to modeling count data. We use four variants of the N-mixture model (Poisson, zero-inflated Poisson, negative binomial, and zero-inflated negative binomial) to model abundance, occupancy (zero-inflated models only) and detection probability of six birds in South Australia. We assess models by their statistical fit and the ecological realism of the parameter estimates. Specifically, we assess the statistical fit with AIC and assess the ecological realism by comparing the parameter estimates with expected values derived from literature, ecological theory, and expert opinion. We demonstrate that, despite being frequently ranked the âbest modelâ according to AIC, the negative binomial variants of the N-mixture often produce ecologically unrealistic parameter estimates. The zero-inflated Poisson variant is preferable to the negative binomial variants of the N-mixture, as it models an ecological mechanism rather than a statistical phenomenon and generates reasonable parameter estimates. Our results emphasize the need to include ecological reasoning when choosing appropriate models and highlight the dangers of modeling statistical properties of the data. We demonstrate that, to obtain ecologically realistic estimates of abundance, occupancy and detection probability, it is essential to understand the sources of variation in the data and then use this information to choose appropriate error distributions. Copyright ESA. All rights reserved
Discovery of New Ultracool White Dwarfs in the Sloan Digital Sky Survey
We report the discovery of five very cool white dwarfs in the Sloan Digital
Sky Survey (SDSS). Four are ultracool, exhibiting strong collision induced
absorption (CIA) from molecular hydrogen and are similar in color to the three
previously known coolest white dwarfs, SDSS J1337+00, LHS 3250 and LHS 1402.
The fifth, an ultracool white dwarf candidate, shows milder CIA flux
suppression and has a color and spectral shape similar to WD 0346+246. All five
new white dwarfs are faint (g > 18.9) and have significant proper motions. One
of the new ultracool white dwarfs, SDSS J0947, appears to be in a binary system
with a slightly warmer (T_{eff} ~ 5000K) white dwarf companion.Comment: 15 pages, 3 figures, submitted to ApJL. Higher resolution versions of
finding charts are available at
http://astro.uchicago.edu/~gates/findingchart
The Radio Sky at Meter Wavelengths: m-Mode Analysis Imaging with the Owens Valley Long Wavelength Array
A host of new low-frequency radio telescopes seek to measure the 21-cm
transition of neutral hydrogen from the early universe. These telescopes have
the potential to directly probe star and galaxy formation at redshifts , but are limited by the dynamic range they can achieve
against foreground sources of low-frequency radio emission. Consequently, there
is a growing demand for modern, high-fidelity maps of the sky at frequencies
below 200 MHz for use in foreground modeling and removal. We describe a new
widefield imaging technique for drift-scanning interferometers,
Tikhonov-regularized -mode analysis imaging. This technique constructs
images of the entire sky in a single synthesis imaging step with exact
treatment of widefield effects. We describe how the CLEAN algorithm can be
adapted to deconvolve maps generated by -mode analysis imaging. We
demonstrate Tikhonov-regularized -mode analysis imaging using the Owens
Valley Long Wavelength Array (OVRO-LWA) by generating 8 new maps of the sky
north of with 15 arcmin angular resolution, at frequencies
evenly spaced between 36.528 MHz and 73.152 MHz, and 800 mJy/beam thermal
noise. These maps are a 10-fold improvement in angular resolution over existing
full-sky maps at comparable frequencies, which have angular resolutions . Each map is constructed exclusively from interferometric observations
and does not represent the globally averaged sky brightness. Future
improvements will incorporate total power radiometry, improved thermal noise,
and improved angular resolution -- due to the planned expansion of the OVRO-LWA
to 2.6 km baselines. These maps serve as a first step on the path to the use of
more sophisticated foreground filters in 21-cm cosmology incorporating the
measured angular and frequency structure of all foreground contaminants.Comment: 27 pages, 18 figure
Cataclysmic Variables from SDSS II. The Second Year
The first full year of operation following the commissioning year of the
Sloan Digital Sky Survey has revealed a wide variety of newly discovered
cataclysmic variables. We show the SDSS spectra of forty-two cataclysmic
variables observed in 2002, of which thirty-five are new classifications, four
are known dwarf novae (CT Hya, RZ Leo, T Leo and BZ UMa), one is a known CV
identified from a previous quasar survey (Aqr1) and two are known ROSAT or
FIRST discovered CVs (RX J09445+0357, FIRST J102347.6+003841). The SDSS
positions, colors and spectra of all forty-two systems are presented. In
addition, the results of follow-up studies of several of these objects identify
the orbital periods, velocity curves and polarization that provide the system
geometry and accretion properties. While most of the SDSS discovered systems
are faint (>18th mag) with low accretion rates (as implied from their spectral
characteristics), there are also a few bright objects which may have escaped
previous surveys due to changes in the mass transfer rate.Comment: Accepted for publication in The Astronomical Journal, Vol. 126, Sep.
2003, 44 pages, 25 figures (now with adjacent captions), AASTeX v5.
Hemostatic efficacy of an advanced bipolar sealer in open gynecologic, thoracic, and colectomy procedures: A prospective cohort study
Background
An advanced bipolar (ABP) tissue sealer designed for division of major vessels in open procedures was evaluated in a prospective post-market study. The objective was to provide clinical data for assessment of vessel transection, hemostatic performance and ease of use of the ABP device during open colectomy, gynecologic, and thoracic operations.
Materials and methods
The ABP test device was used in colectomy (n = 36), gynecologic (n = 44), and thoracic (n = 21) procedure groups. Vessels transected with the ABP device were graded intraoperatively on a hemostasis scale of 1â4, defined as follows: Grade1, no bleeding; Grade 2, minor bleeding with no intervention; Grade 3, minor bleeding requiring touchup with the test device or monopolar cautery; and Grade 4, significant bleeding requiring intervention with any additional hemostatic product. The primary performance measure was the percentage of vessels that achieved hemostasis grades â€3. The primary safety endpoint was the summarization of all ABP device-related adverse events (AEs).
Results
For all three procedure groups together, 302 (96.2%) of 314 total vessel transections were scored as hemostasis grades †3, including 270 (86.0%) that were rated Grade 1. Twelve transections (3.8%) were Grade 4, which included 9 vessels transected in the gynecologic group and 3 in the thoracic group. Three subjects experienced a total of 4 device-related AEs, consisting of hematoma, hypotension, procedural pain, and superficial thermal burn. All 4 device-related AEs were mild in severity.
Conclusion
The advanced bipolar device exhibited effective hemostasis, an acceptable safety profile, and ease of use during colectomy, thoracic, and gynecologic procedures
Faint High Latitude Carbon Stars Discovered by the Sloan Digital Sky Survey: Methods and Initial Results
We report the discovery of 39 Faint High Latitude Carbon Stars (FHLCs) from
Sloan Digital Sky Survey commissioning data. The objects, each selected
photometrically and verified spectroscopically, range over 16.6 < r* < 20.0,
and show a diversity of temperatures as judged by both colors and NaD line
strengths. At the completion of the Sloan Survey, there will be many hundred
homogeneously selected and observed FHLCs in this sample. We present proper
motion measures for each object, indicating that the sample is a mixture of
extremely distant (>100 kpc) halo giant stars, useful for constraining halo
dynamics, plus members of the recently-recognized exotic class of very nearby
dwarf carbon (dC) stars. Motions, and thus dC classification, are inferred for
40-50 percent of the sample, depending on the level of statistical significance
invoked. The new list of dC stars presented here, although selected from only a
small fraction of the final SDSS, doubles the number of such objects found by
all previous methods. (Abstract abridged).Comment: Accepted for publication in The Astronomical Journal, Vol. 124, Sep.
2002, 40 pages, 7 figures, AASTeX v5.
Faint High-Latitude Carbon Stars Discovered by the Sloan Digital Sky Survey: An Initial Catalog
A search of more than 3,000 square degrees of high latitude sky by the Sloan
Digital Sky Survey has yielded 251 faint high-latitude carbon stars (FHLCs),
the large majority previously uncataloged. We present homogeneous spectroscopy,
photometry, and astrometry for the sample. The objects lie in the 15.6 < r <
20.8 range, and exhibit a wide variety of apparent photospheric temperatures,
ranging from spectral types near M to as early as F. Proper motion measurements
for 222 of the objects show that at least 50%, and quite probably more than
60%, of these objects are actually low luminosity dwarf carbon (dC) stars, in
agreement with a variety of recent, more limited investigations which show that
such objects are the numerically dominant type of star with C_2 in the
spectrum. This SDSS homogeneous sample of ~110 dC stars now constitutes 90% of
all known carbon dwarfs, and will grow by another factor of 2-3 by the
completion of the Survey. As the spectra of the dC and the faint halo giant C
stars are very similar (at least at spectral resolution of 1,000) despite a
difference of 10 mag in luminosity, it is imperative that simple luminosity
discriminants other than proper motion be developed. We use our enlarged sample
of FHLCs to examine a variety of possible luminosity criteria, including many
previously suggested, and find that, with certain important caveats, JHK
photometry may segregate dwarfs and giants.Comment: Accepted for publication in The Astronomical Journal, Vol. 127, May
2004, 37 pages, 12 figure
- âŠ