488 research outputs found

    Physical and mechanical properties of PLA, and their functions in widespread applications ā€” A comprehensive review

    Get PDF
    Poly(lactic acid) (PLA), so far, is the most extensively researched and utilized biodegradable aliphatic polyester in human history. Due to its merits, PLA is a leading biomaterial for numerous applications in medicine as well as in industry replacing conventional petrochemical-based polymers. The main purpose of this review is to elaborate the mechanical and physical properties that affect its stability, processability, degradation, PLA-other polymers immiscibility, aging and recyclability, and therefore its potential suitability to fulfill specific application requirements. This review also summarizes variations in these properties during PLA processing (i.e. thermal degradation and recyclability), biodegradation, packaging and sterilization, and aging (i.e. weathering and hygrothermal). In addition, we discuss up-to-date strategies for PLA properties improvements including components and plasticizer blending, nucleation agent addition, and PLA modifications and nanoformulations. Incorporating better understanding of the role of these properties with available improvement strategies is the key for successful utilization of PLA and its copolymers/composites/blends to maximize their fit with worldwide application needs. Keywords: Physical and mechanical properties; PLA; Biodegradable polymers; Polymer processing; Application

    Advances in the delivery of RNA therapeutics: from concept to clinical reality

    Get PDF
    Abstract - The rapid expansion of the available genomic data continues to greatly impact biomedical science and medicine. Fulfilling the clinical potential of genetic discoveries requires the development of therapeutics that can specifically modulate the expression of disease-relevant genes. RNA-based drugs, including short interfering RNAs and antisense oligonucleotides, are particularly promising examples of this newer class of biologics. For over two decades, researchers have been trying to overcome major challenges for utilizing such RNAs in a therapeutic context, including intracellular delivery, stability, and immune response activation. This research is finally beginning to bear fruit as the first RNA drugs gain FDA approval and more advance to the final phases of clinical trials. Furthermore, the recent advent of CRISPR, an RNA-guided gene-editing technology, as well as new strides in the delivery of messenger RNA transcribed in vitro, have triggered a major expansion of the RNA-therapeutics field. In this review, we discuss the challenges for clinical translation of RNA-based therapeutics, with an emphasis on recent advances in delivery technologies, and present an overview of the applications of RNA-based drugs for modulation of gene/protein expression and genome editing that are currently being investigated both in the laboratory as well as in the clinic.Juvenile Diabetes Research Foundation (postdoctoral fellowship Grant 3-PDF-2017-383-A-N)National Cancer Institute (U.S.) (Cancer Center Support (core) Grant P30-CA1405

    Development of siRNA-probes for studying intracellular trafficking of siRNA nanoparticles

    Get PDF
    One important barrier facing the delivery of short interfering RNAs (siRNAs) via synthetic nanoparticles is the rate of nanoparticle disassembly. However, our ability to optimize the release kinetics of siRNAs from nanoparticles for maximum efficacy is limited by the lack of methods to track their intracellular disassembly. Towards this end, we describe the design of two different siRNA-based fluorescent probes whose fluorescence emission changes in response to the assembly state of the nanoparticle. The first probe design involves a redox-sensitive fluorescence-quenched probe that fluoresces only when the nanoparticle is disassembled in a reductive environment. The second probe design is based on a FRET-labeled siRNA pair that fluoresces due to the proximity of the siRNA pair when the nanoparticle is intact. In both approaches, the delivery vehicle need not be labeled. The utility of these probes was investigated with a lipidoid nanoparticle (LNP) as proof-of-concept in both extracellular and intracellular environments. Fluorescence kinetic data from both probes were fit to a two-phase release and decay curve and subsequently quantified to give intracellular disassembly rate constants. Quantitative analysis revealed that the rate constant of siRNA release measured via the fluorescence-quenched probe was almost identical to the rate constant for nanoparticle disassembly measured via the FRET-labeled probes. Furthermore, these probes were utilized to determine subcellular localization of LNPs with the use of automated high-resolution microscopy as they undergo dissociation. Interestingly, this work shows that large amounts of siRNA remain inside vesicular compartments. Altogether, we have developed new siRNA probes that can be utilized with multiple nanocarriers for quantitative and qualitative analysis of nanoparticle dissociation that may serve as a design tool for future delivery systems.National Institutes of Health (U.S.) (Grant R37-EB000244)National Institutes of Health (U.S.) (Grant R01-CA132091)National Institutes of Health (U.S.) (Grant R01-CA132091)National Institutes of Health (U.S.) (Postdoctoral Fellowship

    Genetic and hypoxic alterations of the microRNA-210-ISCU1/2 axis promote iron-sulfur deficiency and pulmonary hypertension

    Get PDF
    Ironā€“sulfur (Feā€S) clusters are essential for mitochondrial metabolism, but their regulation in pulmonary hypertension (PH) remains enigmatic. We demonstrate that alterations of the miRā€210ā€ISCU1/2 axis cause Feā€S deficiencies in vivo and promote PH. In pulmonary vascular cells and particularly endothelium, hypoxic induction of miRā€210 and repression of the miRā€210 targets ISCU1/2 downā€regulated Feā€S levels. In mouse and human vascular and endothelial tissue affected by PH, miRā€210 was elevated accompanied by decreased ISCU1/2 and Feā€S integrity. In mice, miRā€210 repressed ISCU1/2 and promoted PH. Mice deficient in miRā€210, via genetic/pharmacologic means or via an endothelialā€specific manner, displayed increased ISCU1/2 and were resistant to Feā€Sā€dependent pathophenotypes and PH. Similar to hypoxia or miRā€210 overexpression, ISCU1/2 knockdown also promoted PH. Finally, cardiopulmonary exercise testing of a woman with homozygous ISCU mutations revealed exerciseā€induced pulmonary vascular dysfunction. Thus, driven by acquired (hypoxia) or genetic causes, the miRā€210ā€ISCU1/2 regulatory axis is a pathogenic lynchpin causing Feā€S deficiency and PH. These findings carry broad translational implications for defining the metabolic origins of PH and potentially other metabolic diseases sharing similar underpinnings.National Institutes of Health (U.S.) (U54ā€CA151884)National Institutes of Health (U.S.) (R01ā€DE016516ā€06)National Institutes of Health (U.S.) (EB000244

    In Vivo Compatibility of Graphene Oxide with Differing Oxidation States

    Get PDF
    Graphene oxide (GO) is suggested to have great potential as a component of biomedical devices. Although this nanomaterial has been demonstrated to be cytocompatible in vitro, its compatibility in vivo in tissue sites relevant for biomedical device application is yet to be fully understood. Here, we evaluate the compatibility of GO with two different oxidation levels following implantation in subcutaneous and intraperitoneal tissue sites, which are of broad relevance for application to medical devices. We demonstrate GO to be moderately compatible in vivo in both tissue sites, with the inflammatory reaction in response to implantation consistent with a typical foreign body reaction. A reduction in the degree of GO oxidation results in faster immune cell infiltration, uptake, and clearance following both subcutaneous and peritoneal implantation. Future work toward surface modification or coating strategies could be useful to reduce the inflammatory response and improve compatibility of GO as a component of medical devices.National Institutes of Health (U.S.). Centers of Cancer and Nanotechnology Excellence (1U54CA151884-01)National Institutes of Health (U.S.). Ruth L. Kirschstein National Research Service Award (F32EB018155)David H. Koch Institute for Integrative Cancer Research at MIT (Mazumdar-Shaw International Oncology Fellowship)National Institutes of Health (U.S.). Ruth L. Kirschstein National Research Service Award (F32DK101335)National Institutes of Health (U.S.) (R01- DE016516-06

    Therapeutic effect of orally administered microencapsulated oxaliplatin for colorectal cancer

    Get PDF
    Colorectal cancer is a significant source of morbidity and mortality in the United States and other Western countries. Oral delivery of therapeutics remains the most patient accepted form of medication. The development of an oral delivery formulation for local delivery of chemotherapeutics in the gastrointestinal tract can potentially alleviate the adverse side effects including systemic cytotoxicity, as well as focus therapy to the lesions. Here we develop an oral formulation of the chemotherapeutic drug oxaliplatin for the treatment of colorectal cancer. Oxaliplatin was encapsulated in pH sensitive, mucoadhesive chitosan-coated alginate microspheres. The microparticles were formulated to release the chemotherapeutics after passing through the acidic gastric environment thus targeting the intestinal tract. In vivo, these particles substantially reduced the tumor burden in an orthotopic mouse model of colorectal cancer, and reduced mortality.Natural Sciences and Engineering Research Council of Canada (Postdoctoral Fellowship)National Institutes of Health (U.S.)Alnylam Pharmaceuticals (Firm

    Injectable Self-Healing Glucose-Responsive Hydrogels with pH-Regulated Mechanical Properties

    Get PDF
    Dynamically restructuring pH-responsive hydrogels are synthesized, employing dynamic covalent chemistry between phenylboronic acid and cis-diol modified poly(ethylene glycol) macromonomers. These gels display shear-thinning behavior, followed by a rapid structural recovery (self-healing). Size-dependent in vitro controlled and glucose-responsive release of proteins from the hydrogel network, as well as the biocompatibility of the gels, are evaluated both in vitro and in vivo.Leona M. and Harry B. Helmsley Charitable Trust (Award 2014PG-T1D002)National Institutes of Health (U.S.) (Ruth L. Kirschstein National Research Service Award F32DK101335)Wellcome Trust-MIT Postdoctoral Fellowshi

    Managing diabetes with nanomedicine: challenges and opportunities

    Get PDF
    Nanotechnology-based approaches hold substantial potential for improving the care of patients with diabetes. Nanoparticles are being developed as imaging contrast agents to assist in the early diagnosis of type 1 diabetes. Glucose nanosensors are being incorporated in implantable devices that enable more accurate and patient-friendly real-time tracking of blood glucose levels, and are also providing the basis for glucose-responsive nanoparticles that better mimic the body's physiological needs for insulin. Finally, nanotechnology is being used in non-invasive approaches to insulin delivery and to engineer more effective vaccine, cell and gene therapies for type 1 diabetes. Here, we analyse the current state of these approaches and discuss key issues for their translation to clinical practice.Leona M. and Harry B. Helmsley Charitable Trust (Grant 09PG-T1D027)Juvenile Diabetes Research Foundation International (17-2007-1063)Juvenile Diabetes Research Foundation International (3-2013-178)Juvenile Diabetes Research Foundation International (3-2011-310)United States. National Institutes of Health (EB000244)United States. National Institutes of Health (EB000351)United States. National Institutes of Health (DE013023)United States. National Institutes of Health (CA151884

    Degradable Terpolymers with Alkyl Side Chains Demonstrate Enhanced Gene Delivery Potency and Nanoparticle Stability

    Get PDF
    Degradable, cationic poly(Ī²-amino ester)s (PBAEs) with alkyl side chains are developed for non-viral gene delivery. Nanoparticles formed from these PBAE terpolymers exhibit significantly enhanced DNA transfection potency and resistance to aggregation. These hydrophobic PBAE terpolymers, but not PBAEs lacking alkyl side chains, support interaction with PEG-lipid conjugates, facilitating their functionalization with shielding and targeting moieties and accelerating the in vivo translation of these materials.National Heart, Lung, and Blood InstituteNational Institutes of Health (U.S.) (Program of Excellence in Nanotechnology (PEN) Award, Contract #HHSN268201000045C)National Institutes of Health (U.S.) (NIH Grant R01-EB000244-27)National Institutes of Health (U.S.) (NIH Grant 5-R01-CA132091-04)National Institutes of Health (U.S.) (NIH Grant R01-DE016516-03)National Science Foundation (U.S.) (Graduate Research Fellowship)Juvenile Diabetes Research Foundation International (Grant 17ā€“2007-1063

    Effect of molecular weight of amine end-modified poly(Ī²-amino ester)s on gene delivery efficiency and toxicity

    Get PDF
    Amine end-modified poly(Ī²-amino ester)s (PBAEs) have generated interest as efficient, biodegradable polymeric carriers for plasmid DNA (pDNA). For cationic, non-degradable polymers, such as polyethylenimine (PEI), the polymer molecular weight (MW) and molecular weight distribution (MWD) significantly affect transfection activity and cytotoxicity. The effect of MW on DNA transfection activity for PBAEs has been less well studied. We applied two strategies to obtain amine end-modified PBAEs varying in MW. In one approach, we synthesized four amine end-modified PBAEs with each at 15 different monomer molar ratios, and observed that polymers of intermediate length mediated optimal DNA transfection in HeLa cells. Biophysical characterization of these feed ratio variants suggested that optimal performance was related to higher DNA complexation efficiency and smaller nanoparticle size, but not to nanoparticle charge. In a second approach, we used preparative size exclusion chromatography (SEC) to obtain well-defined, monodisperse polymer fractions. We observed that the transfection activities of size-fractionated PBAEs generally increased with MW, a trend that was weakly associated with an increase in DNA binding efficiency. Furthermore, this approach allowed for the isolation of polymer fractions with greater transfection potency than the starting material. For researchers working with gene delivery polymers synthesized by step-growth polymerization, our data highlight the potentially broad utility of preparative SEC to isolate monodisperse polymers with improved properties. Overall, these results help to elucidate the influence of polymer MWD on nucleic acid delivery and provide insight toward the rational design of next-generation materials for gene therapy.Alnylam Pharmaceuticals (Firm)National Institutes of Health (U.S.) (Grant R01-EB000244-27)National Institutes of Health (U.S.) (Grant 5-R01-CA132091-04)National Science Foundation (U.S.). Graduate Research FellowshipNational Institutes of Health (U.S.). Ruth L. Kirschstein National Research Service Award (F32-EB011867
    • ā€¦
    corecore