3,365 research outputs found

    Persistent current formation in a high-temperature Bose-Einstein condensate: an experimental test for c-field theory

    Get PDF
    Experimental stirring of a toroidally trapped Bose-Einstein condensate at high temperature generates a disordered array of quantum vortices that decays via thermal dissipation to form a macroscopic persistent current [T. W. Neely em et al. arXiv:1204.1102 (2012)]. We perform 3D numerical simulations of the experimental sequence within the Stochastic Projected Gross-Pitaevskii equation using ab initio determined reservoir parameters. We find that both damping and noise are essential for describing the dynamics of the high-temperature Bose field. The theory gives a quantitative account of the formation of a persistent current, with no fitted parameters.Comment: v2: 7 pages, 3 figures, new experimental data and numerical simulation

    Loading a vapor cell magneto-optic trap using light-induced atom desorption

    Get PDF
    Low intensity white light was used to increase the loading rate of 87^{87}Rb atoms into a vapor cell magneto-optic trap by inducing non-thermal desorption of Rb atoms from the stainless steel walls of the vapor cell. An increased Rb partial pressure reached a new equilibrium value in less than 10 seconds after switching on the broadband light source. After the source was turned off, the partial pressure returned to its previous value in 1/e1/e times as short as 10 seconds.Comment: 7 pages, 6 figure

    Suppression of Kelvon-induced decay of quantized vortices in oblate Bose-Einstein Condensates

    Full text link
    We study the Kelvin mode excitations on a vortex line in a three-dimensional trapped Bose-Einstein condensate at finite temperature. Our stochastic Gross-Pitaevskii simulations show that the activation of these modes can be suppressed by tightening the confinement along the direction of the vortex line, leading to a strong suppression in the vortex decay rate as the system enters a regime of two-dimensional vortex dynamics. As the system approaches the condensation transition temperature we find that the vortex decay rate is strongly sensitive to dimensionality and temperature, observing a large enhancement for quasi-two-dimensional traps. Three-dimensional simulations of the recent vortex dipole decay experiment of Neely et al. [Phys. Rev. Lett. 104, 160401 (2010)] confirm two-dimensional vortex dynamics, and predict a dipole lifetime consistent with experimental observations and suppression of Kelvon-induced vortex decay in highly oblate condensates.Comment: 8 pages, 8 figure

    Dynamic and Energetic Stabilization of Persistent Currents in Bose-Einstein Condensates

    Get PDF
    We study conditions under which vortices in a highly oblate harmonically trapped Bose-Einstein condensate (BEC) can be stabilized due to pinning by a blue-detuned Gaussian laser beam, with particular emphasis on the potentially destabilizing effects of laser beam positioning within the BEC. Our approach involves theoretical and numerical exploration of dynamically and energetically stable pinning of vortices with winding number up to S=6S=6, in correspondence with experimental observations. Stable pinning is quantified theoretically via Bogoliubov-de Gennes excitation spectrum computations and confirmed via direct numerical simulations for a range of conditions similar to those of experimental observations. The theoretical and numerical results indicate that the pinned winding number, or equivalently the winding number of the superfluid current about the laser beam, decays as a laser beam of fixed intensity moves away from the BEC center. Our theoretical analysis helps explain previous experimental observations, and helps define limits of stable vortex pinning for future experiments involving vortex manipulation by laser beams.Comment: 8 pages 5 figure

    Scaling dynamics of the ultracold Bose gas

    Full text link
    The large-scale expansion dynamics of quantum gases is a central tool for ultracold gas experiments and poses a significant challenge for theory. In this work we provide an exact reformulation of the Gross-Pitaevskii equation for the ultracold Bose gas in a coordinate frame that adaptively scales with the system size during evolution, enabling simulations of long evolution times during expansion or similar large-scale manipulation. Our approach makes no hydrodynamic approximations, is not restricted to a scaling ansatz, harmonic potentials, or energy eigenstates, and can be generalized readily to non-contact interactions via the appropriate stress tensor of the quantum fluid. As applications, we simulate the expansion of the ideal gas, a cigar-shaped condensate in the Thomas-Fermi regime, and a linear superposition of counter propagating Gaussian wavepackets. We recover known scaling for the ideal gas and Thomas-Fermi regimes, and identify a linear regime of aspect-ratio preserving free expansion; analysis of the scaling dynamics equations shows that an exact, aspect-ratio invariant, free expansion does not exist for nonlinear evolution. Our treatment enables exploration of nonlinear effects in matter-wave dynamics over large scale-changing evolution.Comment: 12 pages, 3 figures, 2 appendice

    Observation of vortex dipoles in an oblate Bose-Einstein condensate

    Get PDF
    We report experimental observations and numerical simulations of the formation, dynamics, and lifetimes of single and multiply charged quantized vortex dipoles in highly oblate dilute-gas Bose-Einstein condensates (BECs). We nucleate pairs of vortices of opposite charge (vortex dipoles) by forcing superfluid flow around a repulsive gaussian obstacle within the BEC. By controlling the flow velocity we determine the critical velocity for the nucleation of a single vortex dipole, with excellent agreement between experimental and numerical results. We present measurements of vortex dipole dynamics, finding that the vortex cores of opposite charge can exist for many seconds and that annihilation is inhibited in our highly oblate trap geometry. For sufficiently rapid flow velocities we find that clusters of like-charge vortices aggregate into long-lived dipolar flow structures.Comment: 4 pages, 4 figures, 1 EPAPS fil

    Continuous Observation of Interference Fringes from Bose Condensates

    Full text link
    We use continuous measurement theory to describe the evolution of two Bose condensates in an interference experiment. It is shown how the system evolves in a single run of the experiment into a state with a fixed relative phase, while the total gauge symmetry remains unbroken. Thus, an interference pattern is exhibited without violating atom number conservation.Comment: 4 pages, Postscrip

    Origin of ferroelectricity in the multiferroic barium fluorides BaMF4

    Full text link
    We present a first principles study of the series of multiferroic barium fluorides with the composition BaMF4, where M is Mn, Fe, Co, or Ni. We discuss trends in the structural, electronic, and magnetic properties, and we show that the ferroelectricity in these systems results from the "freezing in" of a single unstable polar phonon mode. In contrast to the case of the standard perovskite ferroelectrics, this structural distortion is not accompanied by charge transfer between cations and anions. Thus, the ferroelectric instability in the multiferroic barium fluorides arises solely due to size effects and the special geometrical constraints of the underlying crystal structure.Comment: 8 pages, 6 figures, 3 table

    Prospects for p-wave paired BCS states of fermionic atoms

    Full text link
    We present theoretical prospects for creating p-wave paired BCS states of magnetic trapped fermionic atoms. Based on our earlier proposal of using dc electric fields to control both the strength and anisotropic characteristic of atom-atom interaction and our recently completed multi-channel atomic collision calculations we discover that p-wave pairing with 40^{40}K and 82,84,86^{82,84,86}Rb in the low field seeking maximum spin polarized state represent excellent choices for achieving superfluid BCS states; and may be realizable with current technology in laser cooling, magnetic trapping, and evaporative/sympathetic cooling, provided the required strong electric field can be applied. We also comment on the prospects of similar p-wave paired BCS states in 6^{6}Li, and more generally on creating other types exotic BCS states. Our study will open a new area in the vigorous pursuit to create a quantum degenerate fermionic atom vapor.Comment: to be publishe
    • …
    corecore