3,191 research outputs found
Factors Influencing the Intention to Quit Drinking Alcohol Among African American/Black Pregnant Women
Factors influencing the intention to quit drinking alcohol among pregnant African American/Black women in San Bernardino and Riverside counties, California were investigated using the theory of planned behavior. Qualitative data were collected via focus groups from 22 pregnant women to ascertain behavioral outcomes, normative, and control beliefs associated with drinking during pregnancy. These data were used to develop a quantitative questionnaire. One hundred forty eight questionnaires were analyzed. Most of the women (86%) reported current alcohol use and 14% were former users. When adjusted for attenuation the correlation of intention with perceived control was .89, attitude .80, and subjective norm .77 all of which were statistically significant. The prediction of these three from their underlying beliefs provides insight into factors which may need to be changed to reduce alcohol use by pregnant African American/ Black women
Trypanosome diversity in wildlife species from the Serengeti and Luangwa Valley ecosystems
<p>Background: The importance of wildlife as reservoirs of African trypanosomes pathogenic to man and livestock is well recognised. While new species of trypanosomes and their variants have been identified in tsetse populations, our knowledge of trypanosome species that are circulating in wildlife populations and their genetic diversity is limited.</p>
<p>Methodology/Principal Findings: Molecular phylogenetic methods were used to examine the genetic diversity and species composition of trypanosomes circulating in wildlife from two ecosystems that exhibit high host species diversity: the Serengeti in Tanzania and the Luangwa Valley in Zambia. Phylogenetic relationships were assessed by alignment of partial 18S, 5.8S and 28S trypanosomal nuclear ribosomal DNA array sequences within the Trypanosomatidae and using ITS1, 5.8S and ITS2 for more detailed analysis of the T. vivax clade. In addition to Trypanosoma brucei, T. congolense, T. simiae, T. simiae (Tsavo), T. godfreyi and T. theileri, three variants of T. vivax were identified from three different wildlife species within one ecosystem, including sequences from trypanosomes from a giraffe and a waterbuck that differed from all published sequences and from each other, and did not amplify with conventional primers for T. vivax.</p>
<p>Conclusions/Significance: Wildlife carries a wide range of trypanosome species. The failure of the diverse T. vivax in this study to amplify with conventional primers suggests that T. vivax may have been under-diagnosed in Tanzania. Since conventional species-specific primers may not amplify all trypanosomes of interest, the use of ITS PCR primers followed by sequencing is a valuable approach to investigate diversity of trypanosome infections in wildlife; amplification of sequences outside the T. brucei clade raises concerns regarding ITS primer specificity for wildlife samples if sequence confirmation is not also undertaken.</p>
Low-Temperature Quantum Relaxation in a System of Magnetic Nanomolecules
We argue that to explain recent resonant tunneling experiments on crystals of
Mn and Fe, particularly in the low-T limit, one must invoke dynamic
nuclear spin and dipolar interactions. We show the low-, short-time
relaxation will then have a form, where depends on the
nuclear , on the tunneling matrix element between the two
lowest levels, and on the initial distribution of internal fields in the
sample, which depends very strongly on sample shape. The results are directly
applicable to the system. We also give some results for the long-time
relaxation.Comment: 4 pages, 3 PostScript figures, LaTe
'Hole-digging' in ensembles of tunneling Molecular Magnets
The nuclear spin-mediated quantum relaxation of ensembles of tunneling
magnetic molecules causes a 'hole' to appear in the distribution of internal
fields in the system. The form of this hole, and its time evolution, are
studied using Monte Carlo simulations. It is shown that the line-shape of the
tunneling hole in a weakly polarised sample must have a Lorentzian lineshape-
the short-time half-width in all experiments done so far should be
, the half-width of the nuclear spin multiplet. After a time
, the single molecule tunneling relaxation time, the hole width begins
to increase rapidly. In initially polarised samples the disintegration of
resonant tunneling surfaces is found to be very fast.Comment: 4 pages, 5 figure
Quantum Relaxation of Magnetisation in Magnetic Particles
At temperatures below the magnetic anisotropy energy, monodomain magnetic
systems (small particles, nanomagnetic devices, etc.) must relax quantum
mechanically. This quantum relaxation must be mediated by the coupling to both
nuclear spins and phonons (and electrons if either particle or substrate is
conducting. We analyze the effect of each of these couplings, and then combine
them. Conducting systems can be modelled by a "giant Kondo" Hamiltonian, with
nuclear spins added in as well. At low temperatures, even microscopic particles
on a conducting substrate (containing only spins) will have their
magnetisation frozen over millenia by a combination of electronic dissipation
and the "degeneracy blocking" caused by nuclear spins. Raising the temperature
leads to a sudden unblocking of the spin dynamics at a well defined
temperature. Insulating systems are quite different. The relaxation is strongly
enhanced by the coupling to nuclear spins. At short times the magnetisation of
an ensemble of particles relaxes logarithmically in time, after an initial very
fast decay; this relaxation proceeds entirely via the nuclear spins. At longer
times phonons take over, but the decay rate is still governed by the
temperature-dependent nuclear bias field acting on the particles - decay may be
exponential or power-law depending on the temperature. The most surprising
feature of the results is the pivotal role played by the nuclear spins. The
results are relevant to any experiments on magnetic particles in which
interparticle dipolar interactions are unimportant. They are also relevant to
future magnetic device technology.Comment: 30 pages, RevTex, e:mail , Submitted to J.Low
Temp.Phys. on 1 Nov. 199
The Grizzly, April 10, 1981
Sigma Pi Sigma Chapter Comes to the Campus • Men Draw for Rooms Thursday • College Choir to Present The Creation April 11 • Gulf Oil Aids Students • Lindback Nominations Requested by Dean • Saturday Night Live de Espanol • Cub and Key Selected • Co-ed Housing: Is it Possible at Ursinus? • Counseling Services in Collegeville • Ursinus Astronomy Forum • Departmental Focus: Psychology; German • Music News • Transplanted Texan • Raykes Deserve More Attention • Paradise Theatre Reopens in Philly • Portrait Schedule Announced • Platforms for Class Office Candidates • Sports Profile: Rob Randelman • Women\u27s Lacrosse • Track Runs Away With Another Perfect Week • Baseball Looking Good • Men\u27s Lacrosse Wins in Overtimehttps://digitalcommons.ursinus.edu/grizzlynews/1058/thumbnail.jp
Creating a data resource: What will it take to build a medical information commons?
National and international public-private partnerships, consortia, and government initiatives are underway to collect and share genomic, personal, and healthcare data on a massive scale. Ideally, these efforts will contribute to the creation of a medical information commons (MIC), a comprehensive data resource that is widely available for both research and clinical uses. Stakeholder participation is essential in clarifying goals, deepening understanding of areas of complexity, and addressing long-standing policy concerns such as privacy and security and data ownership. This article describes eight core principles proposed by a diverse group of expert stakeholders to guide the formation of a successful, sustainable MIC. These principles promote formation of an ethically sound, inclusive, participant-centric MIC and provide a framework for advancing the policy response to data-sharing opportunities and challenges
Viral and cellular mRNA-specific activators harness PABP and eIF4G to promote translation initiation downstream of cap binding
Regulation of mRNA translation is a major control point for gene expression and is critical for life. Of central importance is the complex between cap-bound eukaryotic initiation factor 4E (eIF4E), eIF4G, and poly(A) tail-binding protein (PABP) that circularizes mRNAs, promoting translation and stability. This complex is often targeted to regulate overall translation rates, and also by mRNA-specific translational repressors. However, the mechanisms of mRNA-specific translational activation by RNA-binding proteins remain poorly understood. Here, we address this deficit, focusing on a herpes simplex virus-1 protein, ICP27. We reveal a direct interaction with PABP that is sufficient to promote PABP recruitment and necessary for ICP27-mediated activation. PABP binds several translation factors but is primarily considered to activate translation initiation as part of the PABP-eIF4G-eIF4E complex that stimulates the initial cap-binding step. Importantly, we find that ICP27-PABP forms a complex with, and requires the activity of, eIF4G. Surprisingly, ICP27-PABP-eIF4G complexes act independently of the effects of PABP-eIF4G on cap binding to promote small ribosomal subunit recruitment. Moreover, we find that a cellular mRNA-specific regulator, Deleted in Azoospermia-like (Dazl), also employs the PABP-eIF4G interaction in a similar manner. We propose a mechanism whereby diverse RNA-binding proteins directly recruit PABP, in a non-poly(A) tail-dependent manner, to stimulate the small subunit recruitment step. This strategy may be particularly relevant to biological conditions associated with hypoadenylated mRNAs (e.g., germ cells/neurons) and/or limiting cytoplasmic PABP (e.g., viral infection, cell stress). This mechanism adds significant insight into our knowledge of mRNA-specific translational activation and the function of the PABP-eIF4G complex in translation initiation
Self-similar Solutions to a Kinetic Model for Grain Growth
We prove the existence of self-similar solutions to the Fradkov model for
two-dimensional grain growth, which consists of an infinite number of
nonlocally coupled transport equations for the number densities of grains with
given area and number of neighbours (topological class). For the proof we
introduce a finite maximal topological class and study an appropriate
upwind-discretization of the time dependent problem in self-similar variables.
We first show that the resulting finite dimensional differential system has
nontrivial steady states. Afterwards we let the discretization parameter tend
to zero and prove that the steady states converge to a compactly supported
self-similar solution for a Fradkov model with finitely many equations. In a
third step we let the maximal topology class tend to infinity and obtain
self-similar solutions to the original system that decay exponentially.
Finally, we use the upwind discretization to compute self-similar solutions
numerically.Comment: 25 pages, several figure
Deweyan tools for inquiry and the epistemological context of critical pedagogy
This article develops the notion of resistance as articulated in the literature of critical pedagogy as being both culturally sponsored and cognitively manifested. To do so, the authors draw upon John Dewey\u27s conception of tools for inquiry. Dewey provides a way to conceptualize student resistance not as a form of willful disputation, but instead as a function of socialization into cultural models of thought that actively truncate inquiry. In other words, resistance can be construed as the cognitive and emotive dimensions of the ongoing failure of institutions to provide ideas that help individuals both recognize social problems and imagine possible solutions. Focusing on Dewey\u27s epistemological framework, specifically tools for inquiry, provides a way to grasp this problem. It also affords some innovative solutions; for instance, it helps conceive of possible links between the regular curriculum and the study of specific social justice issues, a relationship that is often under-examined. The aims of critical pedagogy depend upon students developing dexterity with the conceptual tools they use to make meaning of the evidence they confront; these are background skills that the regular curriculum can be made to serve even outside social justice-focused curricula. Furthermore, the article concludes that because such inquiry involves the exploration and potential revision of students\u27 world-ordering beliefs, developing flexibility in how one thinks may be better achieved within academic subjects and topics that are not so intimately connected to students\u27 current social lives, especially where students may be directly implicated
- …