32,475 research outputs found
The influence of dust properties on the mass loss in pulsating AGB stars
We are currently studying carbon based dust types of relevance for
carbon-rich AGB stars, to obtain a better understanding of the influence of the
optical and chemical properties of the grains on the mass loss of the star. An
investigation of the complex interplay between hydrodynamics,radiative transfer
and chemistry has to be based on a better knowledge of the micro-physics of the
relevant dust species.Comment: 4 pages, 2 figures. Proceedings for IAU Colloquium 185 "Radial and
Nonradial Pulsations as Probes of Stellar Physics
Dust grain properties in atmospheres of AGB stars
We present self-consistent dynamical models for dust driven winds of
carbon-rich AGB stars. The models are based on the coupled system of
frequency-dependent radiation hydrodynamics and time-dependent dust formation.
We investigate in detail how the wind properties of the models are influenced
by the micro-physical properties of the dust grains that enter as parameters.
The models are now at a level where it is necessary to be quantitatively
consistent when choosing the dust properties that enters as input into the
models. At our current level of sophistication the choice of dust parameters is
significant for the derived outflow velocity, the degree of condensation and
the estimated mass loss rates of the models. In the transition between models
with and without mass-loss the choice ofmicro-physical parameters turns out to
be very significant for whether a particular set of stellar parameters will
give rise to a dust-driven mass loss or not.Comment: 10 pages, 3 figures. To appear in: Modelling of Stellar Atmospheres,
N.E. Piskunov, W.W. Weiss, D.F. Gray (eds.), IAU Symposium Vol. xxx.
Proceedings for the IAU Symposium 210, Uppsala, June 200
W Plus Multiple Jets at the LHC with High Energy Jets
We study the production of a W boson in association with n hard QCD jets (for
n>=2), with a particular emphasis on results relevant for the Large Hadron
Collider (7 TeV and 8 TeV). We present predictions for this process from High
Energy Jets, a framework for all-order resummation of the dominant
contributions from wide-angle QCD emissions. We first compare predictions
against recent ATLAS data and then shift focus to observables and regions of
phase space where effects beyond NLO are expected to be large.Comment: 19 pages, 9 figure
Detecting and Characterizing Small Dense Bipartite-like Subgraphs by the Bipartiteness Ratio Measure
We study the problem of finding and characterizing subgraphs with small
\textit{bipartiteness ratio}. We give a bicriteria approximation algorithm
\verb|SwpDB| such that if there exists a subset of volume at most and
bipartiteness ratio , then for any , it finds a set
of volume at most and bipartiteness ratio at most
. By combining a truncation operation, we give a local
algorithm \verb|LocDB|, which has asymptotically the same approximation
guarantee as the algorithm \verb|SwpDB| on both the volume and bipartiteness
ratio of the output set, and runs in time
, independent of the size of the
graph. Finally, we give a spectral characterization of the small dense
bipartite-like subgraphs by using the th \textit{largest} eigenvalue of the
Laplacian of the graph.Comment: 17 pages; ISAAC 201
Variational study of the antiferromagnetic insulating phase of V2O3 based on Nth order Muffin-Tin-Orbitals
Motivated by recent results of th order muffin-tin orbital (NMTO)
implementation of the density functional theory (DFT), we re-examine
low-temperature ground-state properties of the anti-ferromagnetic insulating
phase of vanadium sesquioxide VO. The hopping matrix elements obtained
by the NMTO-downfolding procedure differ significantly from those previously
obtained in electronic structure calculations and imply that the in-plane
hopping integrals are as important as the out-of-plane ones. We use the NMTO
hopping matrix elements as input and perform a variational study of the ground
state. We show that the formation of stable molecules throughout the crystal is
not favorable in this case and that the experimentally observed magnetic
structure can still be obtained in the atomic variational regime. However the
resulting ground state (two electrons occupying the degenerate
doublet) is in contrast with many well established experimental observations.
We discuss the implications of this finding in the light of the non-local
electronic correlations certainly present in this compound.Comment: 7 pages, 2 figure
GRB Energetics and the GRB Hubble Diagram: Promises and Limitations
We present a complete sample of 29 GRBs for which it has been possible to
determine temporal breaks (or limits) from their afterglow light curves. We
interpret these breaks within the framework of the uniform conical jet model,
incorporating realistic estimates of the ambient density and propagating error
estimates on the measured quantities. In agreement with our previous analysis
of a smaller sample, the derived jet opening angles of those 16 bursts with
redshifts result in a narrow clustering of geometrically-corrected gamma-ray
energies about E_gamma = 1.33e51 erg; the burst-to-burst variance about this
value is a factor of 2.2. Despite this rather small scatter, we demonstrate in
a series of GRB Hubble diagrams, that the current sample cannot place
meaningful constraints upon the fundamental parameters of the Universe. Indeed
for GRBs to ever be useful in cosmographic measurements we argue the necessity
of two directions. First, GRB Hubble diagrams should be based upon fundamental
physical quantities such as energy, rather than empirically-derived and
physically ill-understood distance indicators. Second, a more homogeneous set
should be constructed by culling sub-classes from the larger sample. These
sub-classes, though now first recognizable by deviant energies, ultimately must
be identifiable by properties other than those directly related to energy. We
identify a new sub-class of GRBs (``f-GRBs'') which appear both underluminous
by factors of at least 10 and exhibit a rapid fading at early times. About
10-20% of observed long-duration bursts appear to be f-GRBs.Comment: Accepted to the Astrophysical Journal (20 May 2003). 19 pages, 3
Postscript figure
Augmented space recursion for partially disordered systems
Off-stoichiometric alloys exhibit partial disorder, in the sense that only
some of the sublattices of the stoichiometric ordered alloy become disordered.
This paper puts forward a generalization of the augmented space recursion (ASR)
(introduced earlier by one of us (Mookerjee et al 1997(*))) for systems with
many atoms per unit cell. In order to justify the convergence properties of ASR
we have studied the convergence of various moments of local density of states
and other physical quantities like Fermi energy and band energy. We have also
looked at the convergence of the magnetic moment of Ni, which is very sensitive
to numerical approximations towards the k-space value 0.6 with the
number of recursion steps prior to termination.Comment: Latex 2e, 21 Pages, 13 Figures, iopb style file attache
Forward jets and forward -boson production at hadron colliders
In this talk we give a short review of forward jets and forward -boson
production at hadron colliders, in view of the extraction of footprints of BFKL
physics. We argue that at Tevatron energies, dijet production at large rapidity
intervals is still subasymptotic with respect to the BFKL regime, thus the
cross section is strongly dependent on the various cuts applied in the
experimental setup. In addition, the choice of equal transverse momentum cuts
on the tagging jets makes the cross section dependent on large logarithms of
non-BFKL origin, and thus may spoil the BFKL analysis. For vector boson
production in association with two jets, we argue that the configurations that
are kinematically favoured tend to have the vector boson forward in rapidity.
Thus jet production lends itself naturally to extensions to the
high-energy limit.Comment: LaTeX, JHEP style, 10 pages, 3 figures. Based on a talk at EPS2001,
Budapest, Hungar
Temporal structure in neuronal activity during working memory in Macaque parietal cortex
A number of cortical structures are reported to have elevated single unit
firing rates sustained throughout the memory period of a working memory task.
How the nervous system forms and maintains these memories is unknown but
reverberating neuronal network activity is thought to be important. We studied
the temporal structure of single unit (SU) activity and simultaneously recorded
local field potential (LFP) activity from area LIP in the inferior parietal
lobe of two awake macaques during a memory-saccade task. Using multitaper
techniques for spectral analysis, which play an important role in obtaining the
present results, we find elevations in spectral power in a 50--90 Hz (gamma)
frequency band during the memory period in both SU and LFP activity. The
activity is tuned to the direction of the saccade providing evidence for
temporal structure that codes for movement plans during working memory. We also
find SU and LFP activity are coherent during the memory period in the 50--90 Hz
gamma band and no consistent relation is present during simple fixation.
Finally, we find organized LFP activity in a 15--25 Hz frequency band that may
be related to movement execution and preparatory aspects of the task. Neuronal
activity could be used to control a neural prosthesis but SU activity can be
hard to isolate with cortical implants. As the LFP is easier to acquire than SU
activity, our finding of rich temporal structure in LFP activity related to
movement planning and execution may accelerate the development of this medical
application.Comment: Originally submitted to the neuro-sys archive which was never
publicly announced (was 0005002
- …