170 research outputs found
An integrated source of broadband quadrature squeezed light
An integrated silicon nitride resonator is proposed as an ultra-compact
source of bright single-mode quadrature squeezed light at 850 nm. Optical
properties of the device are investigated and tailored through numerical
simulations, with particular attention paid to loss associated with interfacing
the device. An asymmetric double layer stack waveguide geometry with inverse
vertical tapers is proposed for efficient and robust fibre-chip coupling,
yielding a simulated total loss of -0.75 dB/facet. We assess the feasibility of
the device through a full quantum noise analysis and derive the output
squeezing spectrum for intra-cavity pump self-phase modulation. Subject to
standard material loss and detection efficiencies, we find that the device
holds promises for generating substantial quantum noise squeezing over a
bandwidth exceeding 1 GHz. In the low-propagation loss regime, approximately -7
dB squeezing is predicted for a pump power of only 50 mW.Comment: 23 pages, 12 figure
Measurement-induced macroscopic superposition states in cavity optomechanics
We present a novel proposal for generating quantum superpositions of
macroscopically distinct states of a bulk mechanical oscillator, compatible
with existing optomechanical devices operating in the readily achievable
bad-cavity limit. The scheme is based on a pulsed cavity optomechanical quantum
non-demolition (QND) interaction, driven by displaced non-Gaussian states, and
measurement-induced feedback, avoiding the need for strong single-photon
optomechanical coupling. Furthermore, we show that single-quadrature cooling of
the mechanical oscillator is sufficient for efficient state preparation, and we
outline a three-pulse protocol comprising a sequence of QND interactions for
squeezing-enhanced cooling, state preparation, and tomography.Comment: 7 pages, 5 figure
A Hybrid Long-Distance Entanglement Distribution Protocol
We propose a hybrid (continuous-discrete variable) quantum repeater protocol
for distribution of entanglement over long distances. Starting from entangled
states created by means of single-photon detection, we show how entangled
coherent state superpositions, also known as `Schr\"odinger cat states', can be
generated by means of homodyne detection of light. We show that
near-deterministic entanglement swapping with such states is possible using
only linear optics and homodyne detectors, and we evaluate the performance of
our protocol combining these elements.Comment: 4 pages, 3 figure
Pump-Enhanced Continuous-Wave Magnetometry using Nitrogen-Vacancy Ensembles
Ensembles of nitrogen-vacancy centers in diamond are a highly promising
platform for high-sensitivity magnetometry, whose efficacy is often based on
efficiently generating and monitoring magnetic-field dependent infrared
fluorescence. Here we report on an increased sensing efficiency with the use of
a 532-nm resonant confocal cavity and a microwave resonator antenna for
measuring the local magnetic noise density using the intrinsic nitrogen-vacancy
concentration of a chemical-vapor deposited single-crystal diamond. We measure
a near-shot-noise-limited magnetic noise floor of 200 pT/
spanning a bandwidth up to 159 Hz, and an extracted sensitivity of
approximately 3 nT/, with further enhancement limited by the
noise floor of the lock-in amplifier and the laser damage threshold of the
optical components. Exploration of the microwave and optical pump-rate
parameter space demonstrates a linewidth-narrowing regime reached by virtue of
using the optical cavity, allowing an enhanced sensitivity to be achieved,
despite an unoptimized collection efficiency of <2 %, and a low
nitrogen-vacancy concentration of about 0.2 ppb.Comment: 10 pages and 5 figure
Nitrogen-Vacancy Ensemble Magnetometry Based on Pump Absorption
We demonstrate magnetic field sensing using an ensemble of nitrogen-vacancy
centers by recording the variation in the pump-light absorption due to the
spin-polarization dependence of the total ground state population. Using a 532
nm pump laser, we measure the absorption of native nitrogen-vacancy centers in
a chemical vapor deposited diamond placed in a resonant optical cavity. For a
laser pump power of 0.4 W and a cavity finesse of 45, we obtain a noise floor
of 100 nT/ spanning a bandwidth up to 125 Hz. We
project a photon shot-noise-limited sensitivity of 1
pT/ by optimizing the nitrogen-vacancy concentration and
the detection method.Comment: 7 pages and 5 figure
Continuous variable entanglement distillation of Non-Gaussian Mixed States
Many different quantum information communication protocols such as
teleportation, dense coding and entanglement based quantum key distribution are
based on the faithful transmission of entanglement between distant location in
an optical network. The distribution of entanglement in such a network is
however hampered by loss and noise that is inherent in all practical quantum
channels. Thus, to enable faithful transmission one must resort to the protocol
of entanglement distillation. In this paper we present a detailed theoretical
analysis and an experimental realization of continuous variable entanglement
distillation in a channel that is inflicted by different kinds of non-Gaussian
noise. The continuous variable entangled states are generated by exploiting the
third order non-linearity in optical fibers, and the states are sent through a
free-space laboratory channel in which the losses are altered to simulate a
free-space atmospheric channel with varying losses. We use linear optical
components, homodyne measurements and classical communication to distill the
entanglement, and we find that by using this method the entanglement can be
probabilistically increased for some specific non-Gaussian noise channels
Nanodiamonds carrying quantum emitters with almost lifetime-limited linewidths
Nanodiamonds (NDs) hosting optically active defects are an important
technical material for applications in quantum sensing, biological imaging, and
quantum optics. The negatively charged silicon vacancy (SiV) defect is known to
fluoresce in molecular sized NDs (1 to 6 nm) and its spectral properties depend
on the quality of the surrounding host lattice. This defect is therefore a good
probe to investigate the material properties of small NDs. Here we report
unprecedented narrow optical transitions for SiV colour centers hosted in
nanodiamonds produced using a novel high-pressure high-temperature (HPHT)
technique. The SiV zero-phonon lines were measured to have an inhomogeneous
distribution of 1.05 nm at 5 K across a sample of numerous NDs. Individual
spectral lines as narrow as 354 MHz were measured for SiV centres in
nanodiamonds smaller than 200 nm, which is four times narrower than the best
SiV line previously reported for nanodiamonds. Correcting for apparent spectral
diffusion yielded a homogeneous linewith of about 200 MHz, which is close to
the width limit imposed by the radiative lifetime. These results demonstrate
that the direct HPHT synthesis technique is capable of producing nanodiamonds
with high crystal lattice quality, which are therefore a valuable technical
material
Acute effects of glucagon-like peptide-1, GLP-1<sub>9-36 amide</sub>, and exenatide on mesenteric blood flow, cardiovascular parameters, and biomarkers in healthy volunteers
Glucagon-like peptide-1 (GLP-1, GLP-17-36amide) and its sister peptide glucagon-like peptide 2 (GLP-2) influence numerous intestinal functions and GLP-2 greatly increases intestinal blood flow. We hypothesized that GLP-1 also stimulates intestinal blood flow and that this would impact on the overall digestive and cardiovascular effects of the hormone. To investigate the influence of GLP-1 receptor agonism on mesenteric and renal blood flow and cardiovascular parameters, we carried out a double-blinded randomized clinical trial. A total of eight healthy volunteers received high physiological subcutaneous injections of GLP-1, GLP-19-36 amide (bioactive metabolite), exenatide (stable GLP-1 agonist), or saline on four separate days. Blood flow in mesenteric, celiac, and renal arteries was measured by Doppler ultrasound. Blood pressure, heart rate, cardiac output, and stroke volume were measured continuously using an integrated system. Plasma was analyzed for glucose, GLP-1 (intact and total), exenatide and Pancreatic polypeptide (PP), and serum for insulin and C-peptide. Neither GLP-1, GLP-19-36 amide, exenatide nor saline elicited any changes in blood flow parameters in the mesenteric or renal arteries. GLP-1 significantly increased heart rate (two-way ANOVA, injection [P = 0.0162], time [P = 0.0038], and injection × time [P = 0.082]; Tukey post hoc GLP-1 vs. saline and GLP-19-36amide [P < 0.011]), and tended to increase cardiac output and decrease stroke volume compared to GLP-19-36 amide and saline. Blood pressures were not affected. As expected, glucose levels fell and insulin secretion increased after infusion of both GLP-1 and exenatide.Lasse Bremholm, Ulrik B Andersen, Mads Hornum, Linda Hilsted, Simon Veedfald, Bolette Hartmann and Jens Juul Hols
- …