174 research outputs found

    Measuring the local gravitational field using survival resonances in a dissipatively driven atom-optics system

    Get PDF
    We do a proof-of-principle demonstration of an atomic gravimeter based on survival resonances of dissipatively driven atoms. Exposing laser-cooled atoms to a sequence of near-resonant standing-wave light pulses reveals survival resonances when the standing-wave interference pattern accelerates. The resonant accelerations determine the local gravitational acceleration and we achieve a precision of 5 ppm with a drop distance less than 1 mm. The incisiveness of the resonances scales with the square of the drop time. Present results indicate that an appropriately designed atomic gravimeter based on survival resonances might be able to reach a precision of 1ÎĽGal with a 10-cm-high fountain. The relatively simple experimental construction of this technique may be of interest for a compact absolute atomic gravimeter

    Distributed quantum sensing in a continuous variable entangled network

    Full text link
    Networking plays a ubiquitous role in quantum technology. It is an integral part of quantum communication and has significant potential for upscaling quantum computer technologies that are otherwise not scalable. Recently, it was realized that sensing of multiple spatially distributed parameters may also benefit from an entangled quantum network. Here we experimentally demonstrate how sensing of an averaged phase shift among four distributed nodes benefits from an entangled quantum network. Using a four-mode entangled continuous variable (CV) state, we demonstrate deterministic quantum phase sensing with a precision beyond what is attainable with separable probes. The techniques behind this result can have direct applications in a number of primitives ranging from biological imaging to quantum networks of atomic clocks

    Fiber coupled EPR-state generation using a single temporally multiplexed squeezed light source

    Get PDF
    A prerequisite for universal quantum computation and other large-scale quantum information processors is the careful preparation of quantum states in massive numbers or of massive dimension. For continuous variable approaches to quantum information processing (QIP), squeezed states are the natural quantum resources, but most demonstrations have been based on a limited number of squeezed states due to the experimental complexity in up-scaling. The number of physical resources can however be significantly reduced by employing the technique of temporal multiplexing. Here, we demonstrate an application to continuous variable QIP of temporal multiplexing in fiber: Using just a single source of squeezed states in combination with active optical switching and a 200 m fiber delay line, we generate fiber-coupled Einstein-Podolsky-Rosen entangled quantum states. Our demonstration is a critical enabler for the construction of an in-fiber, all-purpose quantum information processor based on a single or few squeezed state quantum resources

    Deterministic generation of a two-dimensional cluster state

    Full text link
    Measurement-based quantum computation offers exponential computational speed-up via simple measurements on a large entangled cluster state. We propose and demonstrate a scalable scheme for the generation of photonic cluster states suitable for universal measurement-based quantum computation. We exploit temporal multiplexing of squeezed light modes, delay loops, and beam-splitter transformations to deterministically generate a cylindrical cluster state with a two-dimensional (2D) topological structure as required for universal quantum information processing. The generated state consists of more than 30000 entangled modes arranged in a cylindrical lattice with 24 modes on the circumference, defining the input register, and a length of 1250 modes, defining the computation depth. Our demonstrated source of 2D cluster states can be combined with quantum error correction to enable fault-tolerant quantum computation

    Suppression of inhomogeneous broadening in rf spectroscopy of optically trapped atoms

    Full text link
    We present a novel method for reducing the inhomogeneous frequency broadening in the hyperfine splitting of the ground state of optically trapped atoms. This reduction is achieved by the addition of a weak light field, spatially mode-matched with the trapping field and whose frequency is tuned in-between the two hyperfine levels. We experimentally demonstrate the new scheme with Rb 85 atoms, and report a 50-fold narrowing of the rf spectrum
    • …
    corecore