14,015 research outputs found
A Hyperstable Miniprotein: Additive Effects of D- and L-Ala Substitutions
The effects of alanine substitutions in each helical segment of the structure, and Gly to D-Ala mutations at sites where glycines have positive phi angles in the Trp-cage miniprotein are reported. The effects of the stabilizing mutation were additive, yielding a 20-residue construct (Tm = 83^o^C). Gly to L-Ala substitutions were uniformly destabilizing ([DELTA][DELTA]G~F~ > 11 kJ/mol): the preference for a D-Ala can be as large as 16 kJ/mol. Glycine to D-Ala mutations are validated as a strategy for the design of hyperstable miniprotein scaffolds suitable for stereospecific pharmacophore display
Spin susceptibility of underdoped cuprates: the case of Ortho-II YBa_2Cu_3O_{6.5}
Recent inelastic neutron scattering measurements found that the spin
susceptibility of detwinned and highly ordered ortho-II YBa_2Cu_3O_{6.5}
exhibits, in both the normal and superconducting states, one-dimensional
incommensurate modulations at low energies which were interpreted as a
signature of dynamic stripes. We propose an alternative model based on
quasiparticle transitions between the arcs of a truncated Fermi surface. Such
transitions are resonantly enhanced by scattering to the triplet spin
resonance. We show that the anisotropy in the experimental spin response is
consistent with this model if the gap at the saddle points is anisotropic.Comment: 5 fives, 3 postscript figure
First-principle Wannier functions and effective lattice fermion models for narrow-band compounds
We propose a systematic procedure for constructing effective lattice fermion
models for narrow-band compounds on the basis of first-principles electronic
structure calculations. The method is illustrated for the series of
transition-metal (TM) oxides: SrVO, YTiO, VO, and
YMoO. It consists of three parts, starting from LDA. (i)
construction of the kinetic energy Hamiltonian using downfolding method. (ii)
solution of an inverse problem and construction of the Wannier functions (WFs)
for the given kinetic energy Hamiltonian. (iii) calculation of screened Coulomb
interactions in the basis of \textit{auxiliary} WFs, for which the
kinetic-energy term is set to be zero. The last step is necessary in order to
avoid the double counting of the kinetic-energy term, which is included
explicitly into the model. The screened Coulomb interactions are calculated in
a hybrid scheme. First, we evaluate the screening caused by the change of
occupation numbers and the relaxation of the LMTO basis functions, using the
conventional constraint-LDA approach, where all matrix elements of
hybridization involving the TM orbitals are set to be zero. Then, we switch
on the hybridization and evaluate the screening associated with the change of
this hybridization in RPA. The second channel of screening is very important,
and results in a relatively small value of the effective Coulomb interaction
for isolated bands. We discuss details of this screening and consider
its band-filling dependence, frequency dependence, influence of the lattice
distortion, proximity of other bands, and the dimensionality of the model
Hamiltonian.Comment: 35 pages, 25 figure
Role for the fission yeast RecQ helicase in DNA repair in G2.
Members of the RecQ helicase subfamily are mutated in several human genomic instability syndromes, such as Bloom, Werner, and Rothmund-Thomson syndromes. We show that Rqh1, the single Schizosaccharomyces pombe homologue, is a 3'-to-5' helicase and exists with Top3 in a high-molecular-weight complex. top3 deletion is inviable, and this is suppressed by concomitant loss of rqh1 helicase activity or loss of recombination functions. This is consistent with RecQ helicases in other systems. By using epistasis analysis of the UV radiation sensitivity and by analyzing the kinetics of Rhp51 (Rad51 homologue), Rqh1, and Top3 focus formation in response to UV in synchronized cells, we identify the first evidence of a function for Rqh1 and Top3 in the repair of UV-induced DNA damage in G(2). Our data provide evidence that Rqh1 functions after Rad51 focus formation during DNA repair. We also identify a function for Rqh1 upstream of recombination in an Rhp18-dependent (Rad18 homologue) pathway. The model that these data allow us to propose helps to reconcile different interpretations of RecQ family helicase function that have arisen between work based on the S. pombe system and models based on studies of Saccharomyces cerevisiae SGS1 suggesting that RecQ helicases act before Rad51
Phase transition in a spring-block model of surface fracture
A simple and robust spring-block model obeying threshold dynamics is
introduced to study surface fracture of an overlayer subject to stress induced
by adhesion to a substrate. We find a novel phase transition in the crack
morphology and fragment-size statistics when the strain and the substrate
coupling are varied. Across the transition, the cracks display in succession
short-range, power-law and long-range correlations. The study of stress release
prior to cracking yields useful information on the cracking process.Comment: RevTeX, 4 pages, 4 Postscript figures included using epsfi
Threshold detachment of negative ions by electron impact
The description of threshold fragmentation under long range repulsive forces
is presented. The dominant energy dependence near threshold is isolated by
decomposing the cross section into a product of a back ground part and a
barrier penetration probability resulting from the repulsive Coulomb
interaction. This tunneling probability contains the dominant energy variation
and it can be calculated analytically based on the same principles as Wannier's
description for threshold ionization under attractive forces. Good agreement is
found with the available experimental cross sections on detachment by electron
impact from , and .Comment: 4 pages, 4 figures (EPS), to appear in Phys.Rev.Lett, Feb. 22nd, 199
The Structure of Barium in the hcp Phase Under High Pressure
Recent experimental results on two hcp phases of barium under high pressure
show interesting variation of the lattice parameters. They are here interpreted
in terms of electronic structure calculation by using the LMTO method and
generalized pseudopotential theory (GPT) with a NFE-TBB approach. In phase II
the dramatic drop in c/a is an instability analogous to that in the group II
metals but with the transfer of s to d electrons playing a crucial role in Ba.
Meanwhile in phase V, the instability decrease a lot due to the core repulsion
at very high pressure. PACS numbers: 62.50+p, 61.66Bi, 71.15.Ap, 71.15Hx,
71.15LaComment: 29 pages, 8 figure
Electronic structure of spin 1/2 Heisenberg antiferromagnetic systems: Ba_2Cu(PO_4)_2 and Sr_2Cu(PO_4)_2
We have employed first principles calculations to study the electronic
structure and magnetic properties of the low-dimensional phosphates,
Ba2Cu(PO4)2 and Sr2Cu(PO4)2. Using the self-consistent tight-binding lin-
earized muffin-tin orbital method and the Nth order muffin-tin orbital method,
we have calculated the various intrachain as well as the interchain hopping
parameters between the magnetic ions Cu2+ for both the com- pounds. We find
that the nearest-neighbor intrachain hopping t is the dominant interaction
suggesting the compounds to be indeed one dimensional. Our analysis of the band
dispersion, orbital projected band struc- tures, and the hopping parameters
confirms that the Cu2+-Cu2+ super-super exchange interaction takes place along
the crystallographic b direction mediated by O-P-O. We have also analyzed in
detail the origin of short-range exchange interaction for these systems. Our ab
initio estimate of the ratio of the exchange inter- action of Sr2Cu(PO4)2 to
that of Ba2Cu(PO4)2 compares excellently with available experimental results.Comment: 6 pages, 4 figure
- …