3,512 research outputs found
Efficient provision of public goods with endogenous redistribution
We study a continuous and balanced mechanism that is capable of implementing in Nash equilibrium all the Pareto-efficient individually rational allocations for an economy with public goods. The Government chooses a set of weights directly related to the Lindahl prices corresponding to the Pareto-efficient allocation it wants to implement. The mechanism then guarantees that initial endowments are re-allocated so that the chosen vector of Lindahl prices is indeed a Lindahl equilibrium, and implements the corresponding Lindahl allocation. Previously known mechanisms that implement the Lindahl correspondence do not allow the Government to choose which point on the Pareto frontier should be implemented, unless it can also redistribute initial endowments in the appropriate way. By contrast, in our case the Government directly controls the distribution of welfare in the economy. Finally, besides being balanced and continuous, our mechanism is `simple'. Each agent has to declare a desired increase in the amount of public good, and a vector of redistributive transfers of initial endowments (across other agents).
A lattice of double wells for manipulating pairs of cold atoms
We describe the design and implementation of a 2D optical lattice of double
wells suitable for isolating and manipulating an array of individual pairs of
atoms in an optical lattice. Atoms in the square lattice can be placed in a
double well with any of their four nearest neighbors. The properties of the
double well (the barrier height and relative energy offset of the paired sites)
can be dynamically controlled. The topology of the lattice is phase stable
against phase noise imparted by vibrational noise on mirrors. We demonstrate
the dynamic control of the lattice by showing the coherent splitting of atoms
from single wells into double wells and observing the resulting double-slit
atom diffraction pattern. This lattice can be used to test controlled neutral
atom motion among lattice sites and should allow for testing controlled
two-qubit gates.Comment: 9 pages, 11 figures Accepted for publication in Physical Review
Preparing and probing atomic number states with an atom interferometer
We describe the controlled loading and measurement of number-squeezed states
and Poisson states of atoms in individual sites of a double well optical
lattice. These states are input to an atom interferometer that is realized by
symmetrically splitting individual lattice sites into double wells, allowing
atoms in individual sites to evolve independently. The two paths then
interfere, creating a matter-wave double-slit diffraction pattern. The time
evolution of the double-slit diffraction pattern is used to measure the number
statistics of the input state. The flexibility of our double well lattice
provides a means to detect the presence of empty lattice sites, an important
and so far unmeasured factor in determining the purity of a Mott state
Driven Macroscopic Quantum Tunneling of Ultracold Atoms in Engineered Optical Lattices
Coherent macroscopic tunneling of a Bose-Einstein condensate between two
parts of an optical lattice separated by an energy barrier is theoretically
investigated. We show that by a pulsewise change of the barrier height, it is
possible to switch between tunneling regime and a self-trapped state of the
condensate. This property of the system is explained by effectively reducing
the dynamics to the nonlinear problem of a particle moving in a double square
well potential. The analysis is made for both attractive and repulsive
interatomic forces, and it highlights the experimental relevance of our
findings
Preparation and detection of d-wave superfluidity in two-dimensional optical superlattices
We propose a controlled method to create and detect d-wave superfluidity with
ultracold fermionic atoms loaded in two-dimensional optical superlattices. Our
scheme consists in preparing an array of nearest-neighbor coupled square
plaquettes or ``superplaquettes'' and using them as building blocks to
construct a d-wave superfluid state. We describe how to use the coherent
dynamical evolution in such a system to experimentally probe the pairing
mechanism. We also derive the zero temperature phase diagram of the fermions in
a checkerboard lattice (many weakly coupled plaquettes) and show that by tuning
the inter-plaquette tunneling spin-dependently or varying the filling factor
one can drive the system into a d-wave superfluid phase or a Cooper pair
density wave phase. We discuss the use of noise correlation measurements to
experimentally probe these phases.Comment: 8 pages, 6 figure
Sublattice addressing and spin-dependent motion of atoms in a double-well lattice
We load atoms into every site of an optical lattice and selectively spin flip
atoms in a sublattice consisting of every other site. These selected atoms are
separated from their unselected neighbors by less than an optical wavelength.
We also show spin-dependent transport, where atomic wave packets are coherently
separated into adjacent sites according to their internal state. These tools
should be useful for quantum information processing and quantum simulation of
lattice models with neutral atoms
Near-optimal energy management for plug-in hybrid fuel cell and battery propulsion using deep reinforcement learning
Plug-in hybrid fuel cell and battery propulsion systems appear promising for decarbonising transportation applications such as road vehicles and coastal ships. However, it is challenging to develop optimal or near-optimal energy management for these systems without exact knowledge of future load profiles. Although efforts have been made to develop strategies in a stochastic environment with discrete state space using Q-learning and Double Q-learning, such tabular reinforcement learning agents’ effectiveness is limited due to the state space resolution. This article aims to develop an improved energy management system using deep reinforcement learning to achieve enhanced cost-saving by extending discrete state parameters to be continuous. The improved energy management system is based upon the Double Deep Q-Network. Real-world collected stochastic load profiles are applied to train the Double Deep Q-Network for a coastal ferry. The results suggest that the Double Deep Q-Network acquired energy management strategy has achieved a further 5.5% cost reduction with a 93.8% decrease in training time, compared to that produced by the Double Q-learning agent in discrete state space without function approximations. In addition, this article also proposes an adaptive deep reinforcement learning energy management scheme for practical hybrid-electric propulsion systems operating in changing environments
Collapse and revival in inter-band oscillations of a two-band Bose-Hubbard model
We study the effect of a many-body interaction on inter-band oscillations in
a two-band Bose-Hubbard model with external Stark force. Weak and strong
inter-band oscillations are observed, where the latter arise from a resonant
coupling of the bands. These oscillations collapse and revive due to a weak
two-body interaction between the atoms. Effective models for oscillations in
and out of resonance are introduced that provide predictions for the system's
behaviour, particularly for the time-scales for the collapse and revival of the
resonant inter-band oscillations.Comment: 10 pages, 5 figure
Open-source Simulation of Underwater Gliders
Autonomous underwater gliders (AUGs) are currently deployed in oceans throughout the globe and are recording real-time, in-situ data. Simulating AUGs is rendered particularly difficult by the identification of the underlying dynamic model, as these vehicles embed several internal movable components. Acausal simulators can significantly improve the possibility to study and understand the dynamics of this class of vehicles and can in turn support the design of more robust control systems. In this paper, an open-source simulator architecture designed in OpenModelica is proposed to simulate underwater gliders. The validation is carried out using two different AUGs models, a ROGUE and a Seawing. The vehicle dynamics is firstly compared with analytical results and, following, with values obtained by means of another simulator. Further steps will entail comparing the dynamics of a simulated Seaglider with real deployment data publicly available. In this work, some of the main hydrodynamic and geometrical properties of a Seaglider are identified, computed through Computational Fluid Dynamics (CFD) analyses and retrieved from the mission ballast sheet. Overall, the developed model is expected to enhance gliders’ control strategies, thus improving their performance and mitigating incidents such as being carried away by undesired ocean currents
The novel CXCR4 antagonist POL5551 mobilizes hematopoietic stem and progenitor cells with greater efficiency than Plerixafor
Mobilized blood has supplanted bone marrow (BM) as the primary source of hematopoietic stem cells for autologous and allogeneic stem cell transplantation. Pharmacologically enforced egress of hematopoietic stem cells from BM, or mobilization, has been achieved by directly or indirectly targeting the CXCL12/CXCR4 axis. Shortcomings of the standard mobilizing agent, granulocyte colony-stimulating factor (G-CSF), administered alone or in combination with the only approved CXCR4 antagonist, Plerixafor, continue to fuel the quest for new mobilizing agents. Using Protein Epitope Mimetics technology, a novel peptidic CXCR4 antagonist, POL5551, was developed. In vitro data presented herein indicate high affinity to and specificity for CXCR4. POL5551 exhibited rapid mobilization kinetics and unprecedented efficiency in C57BL/6 mice, exceeding that of Plerixafor and at higher doses also of G-CSF. POL5551-mobilized stem cells demonstrated adequate transplantation properties. In contrast to G-CSF, POL5551 did not induce major morphological changes in the BM of mice. Moreover, we provide evidence of direct POL5551 binding to hematopoietic stem and progenitor cells (HSPCs) in vivo, strengthening the hypothesis that CXCR4 antagonists mediate mobilization by direct targeting of HSPCs. In summary, POL5551 is a potent mobilizing agent for HSPCs in mice with promising therapeutic potential if these data can be orroborated in humans
- …