637 research outputs found

    Thermally excited Trivelpiece–Gould modes as a pure electron plasma temperature diagnostic

    Get PDF
    Thermally excited plasma modes are observed in trapped, near-thermal-equilibrium pure electron plasmas over a temperature range of 0.05<kT<5 eV. The modes are excited and damped by thermal fluctuations in both the plasma and the receiver electronics. The thermal emission spectra together with a plasma-antenna coupling coefficient calibration uniquely determine the plasma (and load) temperature. This calibration is obtained from the mode spectra themselves when the receiver-generated noise absorption is measurable; or from separate wave reflection/absorption measurements; or from kinetic theory. This nondestructive temperature diagnostic agrees well with standard diagnostics, and may be useful for expensive species such as antimatter

    Thermally excited fluctuations as a pure electron plasma temperature diagnostic

    Get PDF
    Thermally excited charge fluctuations in pure electron plasma columns provide a diagnostic for the plasma temperature over a range of 0.05 0.2, so that Landau damping is dominant and well modeled by theory. The third method compares the total (frequency-integrated) number delta N of fluctuating image charges on the wall antenna to a simple thermodynamic calculation. This method works when lambda(D)/R-p > 0.2

    Λ\Lambda-Enhanced Imaging of Molecules in an Optical Trap

    Full text link
    We report non-destructive imaging of optically trapped calcium monofluoride (CaF) molecules using in-situ Λ\Lambda-enhanced gray molasses cooling. 200200 times more fluorescence is obtained compared to destructive on-resonance imaging, and the trapped molecules remain at a temperature of 20 μK20\,\mu\text{K}. The achieved number of scattered photons makes possible non-destructive single-shot detection of single molecules with high fidelity.Comment: 6 pages, 4 figure

    An Optical Tweezer Array of Ultracold Molecules

    Full text link
    Arrays of single ultracold molecules promise to be a powerful platform for many applications ranging from quantum simulation to precision measurement. Here we report on the creation of an optical tweezer array of single ultracold CaF molecules. By utilizing light-induced collisions during the laser cooling process, we trap single molecules. The high densities attained inside the tweezer traps have also enabled us to observe in the absence of light molecule-molecule collisions of laser cooled molecules for the first time

    Thermal excitation of Trivelpiece-Gould modes in a pure electron plasma

    Get PDF
    Thermally excited plasma modes are observed in trapped, near-thermal-equilibrium pure electron plasmas over a temperature range of 0.05<T<5 eV. The measured thermal emission spectra together with a separate measurement of the wave absorption coefficient uniquely determines the temperature. Alternately, kinetic theory including the antenna geometry and the measured mode damping (i.e. spectral width) gives the plasma impedance, obviating the reflection measurement. This non-destructive temperature diagnostic agrees well with standard diagnostics, and may be useful for expensive species such as anti-matter

    Altitudinal Shifts of the Native and Introduced Flora of California in the Context of 20th-Century Warming

    Get PDF
    Aim: The differential responses of plant species to climate change are of great interest and grave concern for scientists and conservationists. One underexploited resource for better understanding these changes are the records held by herbaria. Using these records to assess the responses of different groups of species across the entire flora of California, we sought to quantify the magnitude of species elevational shifts, to measure differences in shifts among functional groups and between native and introduced species, and to evaluate whether these shifts were related to the conservation of thermal niches. Location: California. Methods: To characterize these shifts in California, we used 681,609 georeferenced herbarium records to estimate mean shifts in elevational and climatic space of 4426 plant taxa.We developed and employed a statistical method to robustly analyse the data represented in these records. Results: We found that 15% of all taxa in California have ranges that have shifted upward over the past century. There are significant differences between range shifts of taxa with different naturalization statuses: 12% of endemic taxa show significant upward range shifts, while a greater proportion (27%) of introduced taxa have shifted upward.We found significant differences between the proportion of significant range shifts across taxa with different seed sizes, but did not find evidence for differences in shift based on life-form (annual versus perennial, herbaceous versus woody). Main conclusions: Our analyses suggest that introduced species have disproportionately expanded their ranges upward in elevation over the past century when compared with native species.While these shifts in introduced species may not be exclusively driven by climate, they highlight the importance of considering the interacting factors of climate-driven range shifts and invasion to understand how floras are responding in the face of anthropogenic change

    Observation of Collisions between Two Ultracold Ground-State CaF Molecules

    Full text link
    We measure inelastic collisions between ultracold CaF molecules by combining two optical tweezers, each containing a single molecule. We observe collisions between 2Σ^2\Sigma CaF molecules in the absolute ground state ∣X,v=0,N=0,F=0⟩|X,v=0, N=0,F=0\rangle, and in excited hyperfine and rotational states. In the absolute ground state, we find a two-body loss rate of 7(4)×10−11cm3/s7(4) \times 10^{-11} \text{cm}^{3}/\text{s}, which is below, but close to the predicted universal loss rate.Comment: 5 pages, 4 figure

    Laser Cooling of Optically Trapped Molecules

    Full text link
    Calcium monofluoride (CaF) molecules are loaded into an optical dipole trap (ODT) and subsequently laser cooled within the trap. Starting with magneto-optical trapping, we sub-Doppler cool CaF and then load 150(30)150(30) CaF molecules into an ODT. Enhanced loading by a factor of five is obtained when sub-Doppler cooling light and trapping light are on simultaneously. For trapped molecules, we directly observe efficient sub-Doppler cooling to a temperature of 60(5)60(5) μK\mu\text{K}. The trapped molecular density of 8(2)×1078(2)\times10^7 cm−3^{-3} is an order of magnitude greater than in the initial sub-Doppler cooled sample. The trap lifetime of 750(40) ms is dominated by background gas collisions.Comment: 5 pages, 5 figure
    • …
    corecore