117 research outputs found
Tourism visioning: implementing a primary stakeholder approach
Following a discussion on the relationship between participatory planning, collaboration, and tourism visioning, this paper describes the development of a tourism specific visioning process. A case study of a facilitated tourism visioning process in the City of Surprise, Arizona, U.S.A. is presented. This case study provides an example of the potential power of the visioning process for a destination community developing a tourism vision to guide collaborative tourism planning. Insights from three stakeholder workshops are discussed in two contexts: (1) a long-term recommendations of what is needed for implementing a successful tourism visioning process and development of a community tourism plan, and (2) a manageable set of short-term “successes” that could be accomplished by stakeholders collaborating to establish a tourism vision
Tkachenko modes of vortex lattices in rapidly rotating Bose-Einstein condensates
We calculate the in-plane modes of the vortex lattice in a rotating Bose
condensate from the Thomas-Fermi to the mean-field quantum Hall regimes. The
Tkachenko mode frequency goes from linear in the wavevector, , for lattice
rotational velocities, , much smaller than the lowest sound wave
frequency in a finite system, to quadratic in in the opposite limit. The
system also supports an inertial mode of frequency . The
calculated frequencies are in good agreement with recent observations of
Tkachenko modes at JILA, and provide evidence for the decrease in the shear
modulus of the vortex lattice at rapid rotation.Comment: 4 pages, 2 figure
Collective Oscillations of Vortex Lattices in Rotating Bose-Einstein Condensates
The complete low-energy collective-excitation spectrum of vortex lattices is
discussed for rotating Bose-Einstein condensates (BEC) by solving the
Bogoliubov-de Gennes (BdG) equation, yielding, e.g., the Tkachenko mode
recently observed at JILA. The totally symmetric subset of these modes includes
the transverse shear, common longitudinal, and differential longitudinal modes.
We also solve the time-dependent Gross-Pitaevskii (TDGP) equation to simulate
the actual JILA experiment, obtaining the Tkachenko mode and identifying a pair
of breathing modes. Combining both the BdG and TDGP approaches allows one to
unambiguously identify every observed mode.Comment: 5 pages, 4 figure
Temporal Modulation of Traveling Waves in the Flow Between Rotating Cylinders With Broken Azimuthal Symmetry
The effect of temporal modulation on traveling waves in the flows in two
distinct systems of rotating cylinders, both with broken azimuthal symmetry,
has been investigated. It is shown that by modulating the control parameter at
twice the critical frequency one can excite phase-locked standing waves and
standing-wave-like states which are not allowed when the system is rotationally
symmetric. We also show how previous theoretical results can be extended to
handle patterns such as these, that are periodic in two spatial direction.Comment: 17 pages in LaTeX, 22 figures available as postscript files from
http://www.esam.nwu.edu/riecke/lit/lit.htm
Random-mass Dirac fermions in an imaginary vector potential: Delocalization transition and localization length
One dimensional system of Dirac fermions with a random-varying mass is
studied by the transfer-matrix methods which we developed recently. We
investigate the effects of nonlocal correlation of the spatial-varying Dirac
mass on the delocalization transition. Especially we numerically calculate both
the "typical" and "mean" localization lengths as a function of energy and the
correlation length of the random mass. To this end we introduce an imaginary
vector potential as suggested by Hatano and Nelson and solve the eigenvalue
problem. Numerical calculations are in good agreement with the results of the
analytical calculations.Comment: 4 page
Tkachenko waves, glitches and precession in neutron star
Here I discuss possible relations between free precession of neutron stars,
Tkachenko waves inside them and glitches. I note that the proposed precession
period of the isolated neutron star RX J0720.4-3125 (Haberl et al. 2006) is
consistent with the period of Tkachenko waves for the spin period 8.4s. Based
on a possible observation of a glitch in RX J0720.4-3125 (van Kerkwijk et al.
2007), I propose a simple model, in which long period precession is powered by
Tkachenko waves generated by a glitch. The period of free precession,
determined by a NS oblateness, should be equal to the standing Tkachenko wave
period for effective energy transfer from the standing wave to the precession
motion. A similar scenario can be applicable also in the case of the PSR
B1828-11.Comment: 6 pages, no figures, accepted to Ap&S
Smectic ordering in liquid crystal - aerosil dispersions II. Scaling analysis
Liquid crystals offer many unique opportunities to study various phase
transitions with continuous symmetry in the presence of quenched random
disorder (QRD). The QRD arises from the presence of porous solids in the form
of a random gel network. Experimental and theoretical work support the view
that for fixed (static) inclusions, quasi-long-range smectic order is destroyed
for arbitrarily small volume fractions of the solid. However, the presence of
porous solids indicates that finite-size effects could play some role in
limiting long-range order. In an earlier work, the nematic - smectic-A
transition region of octylcyanobiphenyl (8CB) and silica aerosils was
investigated calorimetrically. A detailed x-ray study of this system is
presented in the preceding Paper I, which indicates that pseudo-critical
scaling behavior is observed. In the present paper, the role of finite-size
scaling and two-scale universality aspects of the 8CB+aerosil system are
presented and the dependence of the QRD strength on the aerosil density is
discussed.Comment: 14 pages, 10 figures, 1 table. Companion paper to "Smectic ordering
in liquid crystal - aerosil dispersions I. X-ray scattering" by R.L. Leheny,
S. Park, R.J. Birgeneau, J.-L. Gallani, C.W. Garland, and G.S. Iannacchion
Influence of Shear-Thinning Rheology on the Mixing Dynamics in Taylor-Couette Flow
Non‐Newtonian rheology can have a significant effect on mixing efficiency, which remains poorly understood. The effect of shear‐thinning rheology in a Taylor‐Couette reactor is studied using a combination of particle image velocimetry and flow visualization. Shear‐thinning is found to alter the critical Reynolds numbers for the formation of Taylor vortices and the higher‐order wavy instability, and is associated with an increase in the axial wavelength. Strong shear‐thinning and weak viscoelasticity can also lead to sudden transitions in wavelength as the Reynolds number is varied. Finally, it is shown that shear‐thinning causes an increase in the mixing time within vortices, due to a reduction in their circulation, but enhances the axial dispersion of fluid in the reactor
- …