1 research outputs found

    Optimisation of phosphate loading on graphene oxide-Fe(iii) composites-possibilities for engineering slow release fertilisers

    Get PDF
    Current commercially available phosphorus (P) fertilisers, which are highly soluble salts, are susceptible to surface runoff to waterways, and leaching to groundwaters where soils are light/medium textured. Here, we report the synthesis of a graphene oxide (GO)/iron (GO–Fe) composite, a promising carrier for loading P. The GO–Fe carriers loaded with P acted as slow release fertilisers with tunable loading/release properties. The amount of P loaded onto the GO–Fe composite was 15%, similar to commercial products. Investigation of the morphology and spectroscopic and chemical analysis revealed a complex loading mechanism of Fe onto GO. Iron, as an active center for P sorption, could interact with the oxygen functional groups at the edge of GO sheets as well as the π-electron system of the aromatic part of GO. Column perfusion studies, visualisation of P diffusion in soils and chemical analysis of soils after diffusion showed the composites to have slow-release properties. Pot experiments using wheat and our composites resulted in the same yield as using highly soluble commercial fertiliser.Ivan B. Andelkovic, Shervin Kabiri, Rodrigo C. da Silva, Ehsan Tavakkoli, Jason K. Kirby, Dusan Losic and Michael J. McLaughli
    corecore