18 research outputs found
Milk exosomes: beyond dietary microRNAs
Extracellular vesicles deliver a variety of cargos to recipient cells, including the delivery of cargos in dietary vesicles from bovine milk to non-bovine species. The rate of discovery in this important line of research is slowed by a controversy whether the delivery and bioactivity of a single class of vesicle cargos, microRNAs, are real or not. This opinion paper argues that the evidence in support of the bioavailability of microRNAs encapsulated in dietary exosomes outweighs the evidence produced by scholars doubting that phenomenon is real. Importantly, this paper posits that the time is ripe to look beyond microRNA cargos and pursue innovative pathways through which dietary exosomes alter metabolism. Here, we highlight potentially fruitful lines of exploration
Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches
Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its ‘Minimal Information for Studies of Extracellular Vesicles’, which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly
The role of extracellular vesicles in malaria biology and pathogenesis
In the past decade, research on the functions of extracellular vesicles in malaria has expanded dramatically. Investigations into the various vesicle types, from both host and parasite origin, has revealed important roles for extracellular vesicles in disease pathogenesis and susceptibility, as well as cell-cell communication and immune responses. Here, work relating to extracellular vesicles in malaria is reviewed, and the areas that remain unknown and require further investigations are highlighted
Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines
The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles (“MISEV”) guidelines for the field in 2014. We now update these “MISEV2014” guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points
Crotamine cell-penetrating nanocarriers: cancer-targeting and potential biotechnological and/or medical applications
Crotamine is a basic, 42-residue polypeptide from snake venom that has been shown to possess cell-penetrating properties. Here we describe the preparation, purification, biochemical and biophysical analysis of venom-derived, recombinant, chemically synthesized, and fluorescent-labeled crotamine. We also describe the formation and characterization of crotamine–DNA and crotamine–RNA nanoparticles; and the delivery of these nanoparticles into cells and animals. Crotamine forms nanoparticles with a variety of DNA and RNA molecules, and crotamine–plasmid DNA nanoparticles are selectively delivered into actively proliferating cells in culture or in living organisms such as mice, Plasmodium, and worms. As such, these nanoparticles could form the basis for a nucleic acid drug-delivery system. We also describe here the design and characterization of crotamine-functionalized gold nanoparticles, and the delivery of these nanoparticles into cells. We also evaluated the viability of using the combination of crotamine with silica nanoparticles in animal models, aiming to provide slow delivery, and to decrease the crotamine doses needed for the biological effects. In addition, the efficacy of administering crotamine orally was also demonstrated
Thy-1 dependent uptake of mesenchymal stem cell-derived extracellular vesicles blocks myofibroblastic differentiation
Abstract Bone marrow-derived mesenchymal stem cells (MSC) have been promoted for multiple therapeutic applications. Many beneficial effects of MSCs are paracrine, dependent on extracellular vesicles (EVs). Although MSC-derived EVs (mEVs) are beneficial for acute lung injury and pulmonary fibrosis, mechanisms of mEV uptake by lung fibroblasts and their effects on myofibroblastic differentiation have not been established. We demonstrate that mEVs, but not fibroblast EVs (fEVs), suppress TGFβ1-induced myofibroblastic differentiation of normal and idiopathic pulmonary fibrosis (IPF) lung fibroblasts. MEVs display increased time- and dose-dependent cellular uptake compared to fEVs. Removal or blocking of Thy-1, or blocking Thy-1-beta integrin interactions, decreased mEV uptake and prevented suppression of myofibroblastic differentiation. MicroRNAs (miRs) 199a/b-3p, 21-5p, 630, 22-3p, 196a-5p, 199b-5p, 34a-5p and 148a-3p are selectively packaged in mEVs. In silico analyses indicated that IPF lung fibroblasts have increased expression of genes that are targets of mEV-enriched miRs. MiR-630 mimics blocked TGFβ1 induction of CDH2 in normal and IPF fibroblasts, and antagomiR-630 abrogated the effect of mEV on CDH2 expression. These data suggest that the interaction of Thy-1 with beta integrins mediates mEV uptake by lung fibroblasts, which blocks myofibroblastic differentiation, and that mEVs are enriched for miRs that target profibrotic genes up-regulated in IPF fibroblasts