8 research outputs found

    Matrix-type certified reference materials for quality control of metal determination from solid environmental and vegetation samples

    Get PDF
    In the context of monitoring environmental factors, metals are one of the major analytical components. Applying appropriate determination methods and obtaining accurate results is a requirement imposed on environmental laboratories that perform quality control of water, soil, waste or vegetation. This study presents some examples of certified reference materials for quality control of the results of toxic metal determination from solid environmental and vegetation samples. The analyzed and verified metals were As, Cd, Cr, Cu, Ni, Pb and Zn. The pre-treatment of the samples, the determination methods of metals and the obtained results are also presented. Inductively Coupled Plasma Optical Emission Spectrometry (ICP-EOS) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) techniques are suitable for low metal concentrations, while ICP-EOS and Flame Atomic Absorption Spectrometry (FAAS) methods can be used at high concentrations

    The influence of toxic metals As, Cd, Ni, and Pb on nutrients accumulation in Mentha piperita

    Get PDF
    Medicinal plants are, for a considerable part of the population, an important source of treatment for certain diseases. They contain essential nutrients for the human body such as magnesium, iron and zinc. The present study shows the influence of the addition of As, Cd, Ni, Pb on mineral nutrients in different organs of Mentha piperita. The experiments were carried out in the laboratory for a period of three months (May-July). Mentha piperita plants were AsCd and AsCdNiPb exposed up to final concentrations corresponding to the soil intervention threshold according to Romanian Order no.756/1997 (25 mg/kg As, 5 mg/kg Cd, 150 mg/kg Ni and 100 mg/ kg Pb). Simultaneously with these experiments, a control experiment (M) was performed. To evaluate the effect of the addition of AsCd and AsCdNiPb on the accumulation and transfer of Ca, Cr, Cu, Mn, Mo, Fe and Zn, the transfer coefficient (TC), the translocation factor (TF), and the enrichment factor (EF) were calculated. A higher concentration of Ca, Cr, Cu, Fe, Mn, Mo, and Zn was observed especially in the mint root in the experiments in which AsCdNiPb was added compared to those in which only AsCd was added. The AsCdNiPb addition did not influence the translocation of micro and macronutrients from the root to the aerial (edible) parts of the plant. In the case of the AsCd, addition, the translocation of zinc from the root to the aerial parts (leaves and stem) of the plant was increased

    Ranking the dietary treatments of broiler chickens in order to reduce nitrogen pollution of the environment

    Get PDF
    The Analytical Hierarchy Process (AHP) methodology was used to rank the tested nutritional solutions and to choose the best nutritional solution in order to reduce environmental pollution with nitrogen. The evaluation methodology consisted in comparing by three evaluators the diets based on the zootechnical performances/thigh meat quality / environmental impact. The diets of tested nutritional solutions were contained either medicinal and aromatic plants (basil, thyme, sage) in a proportion of 1% (batch 2), respectively essential oils (0.05%) of the same plants (batch 1). The application of the AHP methodology indicated that the best nutritional alternative was obtained for basil, either in the form of essential oil or vegetal material

    Electrochemical System for Field Control of Hg<sup>2+</sup> Concentration in Wastewater Samples

    No full text
    The paper presents the validation of an electrochemical procedure for on-site Hg2+ ions determination in wastewater samples using a modified carbon screen-printed electrode (SPE) with a complexing polymeric film based on poly(2,2′-(ethane-1,2-diylbis((2-(azulen-2-ylamino)-2-oxoethyl)azanediyl))diacetic acid) (polyL). Using metal ions accumulation in an open circuit followed by anodic stripping voltammetry, the SPE-polyL electrode presents a linear range in the range of 20 µg/L to 150 µg/L, with a limit of detection (LOD) = 6 µg/L, limit of quantification (LOQ) = 20 µg/L, and an average measurement uncertainty of 26% of mercury ions. The results obtained in situ and in the laboratory using the SPE-polyL modified electrode were compared with those obtained by the atomic absorption spectrometry coupled with the cold vapor generation standardized method, with the average values indicating excellent recovery yields

    Electrochemical System for Field Control of Hg2+ Concentration in Wastewater Samples

    No full text
    The paper presents the validation of an electrochemical procedure for on-site Hg2+ ions determination in wastewater samples using a modified carbon screen-printed electrode (SPE) with a complexing polymeric film based on poly(2,2&prime;-(ethane-1,2-diylbis((2-(azulen-2-ylamino)-2-oxoethyl)azanediyl))diacetic acid) (polyL). Using metal ions accumulation in an open circuit followed by anodic stripping voltammetry, the SPE-polyL electrode presents a linear range in the range of 20 &micro;g/L to 150 &micro;g/L, with a limit of detection (LOD) = 6 &micro;g/L, limit of quantification (LOQ) = 20 &micro;g/L, and an average measurement uncertainty of 26% of mercury ions. The results obtained in situ and in the laboratory using the SPE-polyL modified electrode were compared with those obtained by the atomic absorption spectrometry coupled with the cold vapor generation standardized method, with the average values indicating excellent recovery yields

    Bioavailability, Accumulation and Distribution of Toxic Metals (As, Cd, Ni and Pb) and Their Impact on Sinapis alba Plant Nutrient Metabolism

    No full text
    This study presents the behavior of white mustard seedlings Sinapis alba grown for three months in laboratory polluted soil containing As, Cd, Ni and Pb. Four different experiments were performed in which As was combined with the other three toxic metals in different combinations (As, AsCd, AsCdNi, AsCdNiPb), keeping the same concentrations of As and Cd in all tests and following the national soil quality regulations. The effects of these metals were monitored by the analytical control of metal concentrations in soil and plants, bioavailability tests of mobile metal fractions using three different extracting solutions (DTPA + TEA + CaCl2-DTPA, DTPA + CaCl2-CAT, and CH3COONH4 + EDTA-EDTA) and calculation of bioaccumulation and translocation factors. Additionally, micro, and macro-nutrients both in soil and plant (root, stem, leaves, flowers and seeds) were analyzed in order to evaluate the impact of toxic metals on plant nutrient metabolism. Metals were significantly and differently accumulated in the plant tissues, especially under AsCdNi and AsCdNiPb treatments. Significant differences (p &lt; 0.05) in the concentration of both As and Cd were highlighted. Translocation could be influenced by the presence of other toxic metals, such as Cd, but also of essential metals, through the competition and antagonism processes existing in plant tissues. Significantly, more Cd and Ni levels were detected in leaves and flowers. Cd was also detected in seeds above the WHO limit, but the results are not statistically significant (p &gt; 0.05). The extraction of metallic nutrients (Zn, Cu, Mn, Ni, Mg, K, Fe, Ca, Cr) in the plant was not influenced by the presence of toxic metal combinations, on the contrary, their translocation was more efficient in the aerial parts of the plants. No phytotoxic effects were recorded during the exposure period. The most efficient methods of metal extraction from soil were for As-CAT; Cd-all methods; Pb and Ni-DTPA. The Pearson correlations (r) between applied extraction methods and metal detection in plants showed positive correlations for all toxic metals as follows: As-CAT &gt; DTPA &gt; EDTA, Cd-DTPA &gt; CAT &gt; EDTA, Ni-EDTA = DTPA &gt; CAT, Pb-EDTA = DTPA = CAT). The results revealed that Sinapis alba has a good ability to accumulate the most bioavailable metals Cd and Ni, to stabilize As at the root level and to block Pb in soil

    Groundwater Quality Affected by the Pyrite Ash Waste and Fertilizers in Valea Calugareasca, Romania

    No full text
    The aim of the study was to assess the groundwater quality in a rural area affected by the abandoned pyrite ash waste dumps. The abundance of major ions in groundwater depends largely on the nature of the rocks, climatic conditions, and mobility. To evaluate geochemical processes, 30 groundwater samples collected from Valea Calugareasca, Prahova County, Romania, were analyzed for the major anions (NO3&minus;, SO42&minus;, Cl&minus;, HCO3&minus;, and F&minus;) and cations (Ca2+, Mg2+, Na+, and K+), which are naturally highly variable due to climatic and geographical location conditions. Ca2+, Na+, Mg2+, and K+ varied between 118 and 275 mg/L, 32 and 160 mg/L, 12.2 and 78.4 mg/L, and 0.21 and 4.48 mg/L, respectively. NO3&minus; levels exceeding the World Health Organization (WHO) limit of 50 mg/L were identified in 17% of the groundwater samples, mainly as result of fertilizers applied to agricultural activities. The hydrogeochemical study identified dolomite dissolution and halite precipitation as natural sources of ions as well as the presence of pyrite as a source of SO42&minus; ions in 60% of the samples. The sulfate content varied between 125 and 262 mg/L. Bicarbonate and chloride concentrations varied between 202 and 530 mg/L and 21 and 212 mg/L. The saturation index indicates the contribution of Ca2+ ions in the groundwater samples came from some processes of dissolving rocks such as aragonites (values between 1.27 and 2.69) and calcites (values between 1.43 and 2.82). Negative halite values indicated that salt accumulation results from precipitation processes. Only 10% of the analyzed groundwater samples were suitable for human consumption, the samples being situated on the hill, far away from the pyrite ash waste dumps and agricultural land

    Toxic Metals (As, Cd, Ni, Pb) Impact in the Most Common Medicinal Plant (Mentha piperita)

    No full text
    This study aimed to evaluate the behavior of Mentha piperita under Cd, Pb, Ni, and As soil contamination and their transfer from soil in plants as well as translocation in the roots/stems/leaves system compared with a control without metal addition. The mint seedlings were exposed for a three-month period using two metal mixtures in the same concentrations such as AsCd and AsCdNiPb (23.7 mg/kg As, 5 mg/kg Cd, 136 mg/kg Ni, and 95 mg/kg Pb). The results of metal concentration in plants showed that Cd, Ni, and Pb were accumulated in different parts of the plant, except for As. In plants organs, the order of metal accumulation was roots &gt; stems &gt; leaves. No significant impact on the growth, development, and chlorophyll content compared to the control was observed in the first month of exposure. After three months of exposure, phytotoxic effects occurred. Generally, the transfer coefficients and translocation factors values were less than 1, indicating that Mentha piperita immobilized the metals in root. The laboratory experiments highlighted that for a short period of time, Mentha piperita has the capacity to stabilize the metals at the root level and was a metal-tolerant plant when using a garden rich-substrate
    corecore