12 research outputs found

    Characterization of mechanism of action of hydrogen sulfide (H2S) in the regulation of smooth muscle function

    Get PDF
    Hydrogen sulfide (H2S) is receiving increasing interest, as much as nitric oxide (NO) and carbon monoxide have received previously, to understand its physiological functions as it meets all the criteria to define as a third gasotransmitter. Endogenous synthesis from L-cysteine via cystathionine-γ-lyase (CSE) and cystathionine-β-synthase (CBS) and the function of H2S as an inhibitor of smooth muscle contraction in gastrointestinal tract are known. However, the loci of generation and action of H2S, and the mechanism of inhibition of contraction are unknown. Hence, my aims in the present study are to: i) identify the expression of enzymes in smooth muscle, ii) determine the effects of endogenously released and exogenously applied H2S on smooth muscle function; and iii) identify the targets and mechanism involved in mediating the effects of H2S using isolated smooth muscle cells from rabbit colon. I have identified the expression of CSE, but not CBS, in smooth muscle and demonstrated that L-cysteine (an activator of CSE) and NaHS (H2S donor): 1) inhibited carbachol-induced contraction in muscle strips and isolated muscle cells that was independent of KATP channels, a known S-sulfhydration target of H2S; 2) induced S-sulfhydration of small G protein, RhoA leading to inhibition of RhoA and Rho kinase activities, a key pathway in the sustained smooth muscle contraction; and 3) inhibited PDE5 activity leading to augmentation NO-induced cGMP formation and muscle relaxation. Sodium nitroprusside (an NO donor) induced an increase in H2S production via PKG-dependent phosphorylation and activation of CSE. We conclude that smooth muscle cells selectively express CSE, and endogenous generation of H2S via activation of CSE inhibits muscle contraction and augments muscle relaxation. Inhibition of contraction is mediated via S-sulfhydration of RhoA and suppression of RhoA/Rho kinase pathway. Augmentation of relaxation is mediated via inhibition of PDE5 activity and stimulation of cGMP/PKG pathway, which in addition initiates generation of H2S via PKG-mediated phosphorylation and activation of CSE. The findings are important in providing the underlying mechanisms involved in the regulation of smooth muscle function by H2S and could offer insights for the development of therapeutic agents that may act on smooth muscle in the gut to treat motility disorders

    Sensitization of renal carcinoma cells to TRAIL-induced apoptosis by rocaglamide and analogs

    Get PDF
    Rocaglamide has been reported to sensitize several cell types to TRAIL-induced apoptosis. In recent years, advances in synthetic techniques have led to generation of novel rocaglamide analogs. However, these have not been extensively analyzed as TRAIL sensitizers, particularly in TRAIL-resistant renal cell carcinoma cells. Evaluation of rocaglamide and analogs identified 29 compounds that are able to sensitize TRAIL-resistant ACHN cells to TRAIL-induced, caspase-dependent apoptosis with sub-µM potency which correlated with their potency as protein synthesis inhibitors and with loss of cFLIP protein in the same cells. Rocaglamide alone induced cell cycle arrest, but not apoptosis. Rocaglates averaged 4–5-fold higher potency as TRAIL sensitizers than as protein synthesis inhibitors suggesting a potential window for maximizing TRAIL sensitization while minimizing effects of general protein synthesis inhibition. A wide range of other rocaglate effects (e.g. on JNK or RAF-MEK-ERK signaling, death receptor levels, ROS, ER stress, eIF4E phosphorylation) were assessed, but did not contribute to TRAIL sensitization. Other than a rapid loss of MCL-1, rocaglates had minimal effects on mitochondrial apoptotic pathway proteins. The identification of structurally diverse/mechanistically similar TRAIL sensitizing rocaglates provides insights into both rocaglate structure and function and potential further development for use in RCC-directed combination therapy.This project has been funded in whole or in part with Federal funds from the National Cancer Institute, National Institutes of Health, under Contract No. HHSN261200800001E. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government. This research was supported [in part] by the Intramural Research Program of NIH, Frederick. National Lab, Center for Cancer Research. Research performed at Boston University was supported in part by NIH R35 GM118173. Work at the BU-CMD is supported by R24 GM111625. (HHSN261200800001E - National Cancer Institute, National Institutes of Health; Intramural Research Program of NIH, Frederick. National Lab, Center for Cancer Research; R35 GM118173 - NIH; R24 GM111625)Published versio

    Release of GLP-1 and PYY in response to the activation of G protein-coupled bile acid receptor TGR5 is mediated by Epac/PLC-ε pathway and modulated by endogenous H2S

    Get PDF
    Activation of plasma membrane TGR5 receptors in enteroendocrine cells by bile acids is known to regulate gastrointestinal secretion and motility and glucose homeostasis. The endocrine functions of the gut are modulated by microenvironment of the distal gut predominantly by sulfur-containing bacteria of the microbiota that produce H2S. However, the mechanisms involved in the release of peptide hormones, GLP-1 and PYY in response to TGR5 activation by bile acids and the effect of H2S on bile acid-induced release of GLP-1 and PYY are unclear. In the present study, we have identified the signaling pathways activated by the bile acid receptor TGR5 to mediate GLP-1 and PYY release and the mechanism of inhibition of their release by H2S in enteroendocrine cells. The TGR5 ligand oleanolic acid (OA) stimulated Gs and cAMP formation, and caused GLP-1 and PYY release. OA-induced cAMP formation and peptide release were blocked by TGR5 siRNA. OA also caused an increase in PI hydrolysis and intracellular Ca2+. Increase in PI hydrolysis was abolished in cells transfected with PLC-ε siRNA. 8-pCPT-2’-O-Me-cAMP, a selective activator of Epac, stimulated PI hydrolysis, and GLP-1 and PYY release. L-Cysteine, which activates endogenous H2S producing enzymes cystathionine--lyase and cystathionine--synthase, and NaHS and GYY4137, which generate H2S, inhibited PI hydrolysis and GLP-1 and PYY release in response to OA or 8-pCPT-2’-O-Me-cAMP. Propargylglycine, an inhibitor of CSE, reversed the effect of L-cysteine on PI hydrolysis and GLP-1 and PYY release. We conclude: i) activation of Gs-coupled TGR5 receptors causes stimulation of PI hydrolysis, and release of GLP-1 and PYY via a PKA-independent, cAMP-dependent mechanism involving Epac/PLC-/Ca2+ pathway, and ii) H2S has potent inhibitory effects on GLP-1 and PYY release in response to TGR5 activation, and the mechanism involves inhibition of PLC-/Ca2+ pathway

    Regulation of gastric smooth muscle contraction via Ca2+-dependent and Ca2+-independent actin polymerization.

    No full text
    In gastrointestinal smooth muscle, acetylcholine induced muscle contraction is biphasic, initial peak followed by sustained contraction. Contraction is regulated by phosphorylation of 20 kDa myosin light chain (MLC) at Ser19, interaction of actin and myosin, and actin polymerization. The present study characterized the signaling mechanisms involved in actin polymerization during initial and sustained muscle contraction in response to muscarinic M3 receptor activation in gastric smooth muscle cells by targeting the effectors of initial (phospholipase C (PLC)-β/Ca2+ pathway) and sustained (RhoA/focal adhesion kinase (FAK)/Rho kinase pathway) contraction. The initial Ca2+ dependent contraction and actin polymerization is mediated by sequential activation of PLC-β1 via Gαq, IP3 formation, Ca2+ release and Ca2+ dependent phosphorylation of proline-rich-tyrosine kinase 2 (Pyk2) at Tyr402. The sustained Ca2+ independent contraction and actin polymerization is mediated by activation of RhoA, and phosphorylation of FAK at Tyr397. Both phosphorylation of Pyk2 and FAK leads to phosphorylation of paxillin at Tyr118 and association of phosphorylated paxillin with the GEF proteins p21-activated kinase (PAK) interacting exchange factor α, β (α and β PIX) and DOCK 180. These GEF proteins stimulate Cdc42 leading to the activation of nucleation promoting factor N-WASP (neuronal Wiskott-Aldrich syndrome protein), which interacts with actin related protein complex 2/3 (Arp2/3) to induce actin polymerization and muscle contraction. Acetylcholine induced muscle contraction is inhibited by actin polymerization inhibitors. Thus, our results suggest that a novel mechanism for the regulation of smooth muscle contraction is mediated by actin polymerization in gastrointestinal smooth muscle which is independent of MLC20 phosphorylation
    corecore