4 research outputs found

    A Novel Approach about Edible Packaging Materials Based on Oilcakes—A Review

    No full text
    Due to the growing global population and subsequent environment degradation, as well as changes in the climate, changing consumers’ dietary habits is necessary to create strategies for the most efficient use of natural resources to eliminate waste in the food supply chain. The packaging of food is essential to preserve the food’s properties, extend its shelf life and offer nutritional information. Food products are packaged in various materials of which the most used are plastics, but they have a negative impact on the environment. Various efforts have been made to address this situation, but unfortunately, this includes recycling rather than replacing them with sustainable solutions. There is a trend toward edible packaging materials with more additional functions (antioxidant, antimicrobial and nutritional properties). Edible packaging is also a sustainable solution to avoid food waste and environment pollution. Oilcakes are the principal by-products obtained from the oil extraction process. These by-products are currently underused as animal feed, landfilling or compost. Because they contain large amounts of valuable compounds and are low-cost ingredients, they can be used to produce materials suitable for food packaging. This review covers the recent developments in oilcake-based packaging materials. Special emphasis is placed on the study of materials and technologies that can be used to make edible film in order to research the most suitable ways of developing oilcake-based film that can be consumed simultaneously with the product. These types of materials do not exist on the market

    Development of New Biodegradable Agar-Alginate Membranes for Food Packaging

    No full text
    The paper analyzes the possibility of replacing the polyethylene packaging from food products with biodegradable packaging obtained from biopolymers. The proposed packaging materials were obtained from polysaccharides (alginate, agar), glycerol as plasticizer. To improve the properties necessary for the coating materials, two groups of membranes were made, one with ascorbic acid (AA, 0.1–0.45 g) in 150 mL filmogenic solution and the other with calcium chloride (CaCl2, 0.02–0.1 g) in 150 mL filmogenic solution. The membranes were analyzed for mechanical properties, light transmission, transparency and barrier properties (water vapor, oxygen, or fatty substances). The results demonstrated that the addition of AA (0.1 g), increases tensile strength, transparency, oxygen and water barrier properties. On the other hand, the addition of calcium chloride (0.08 g) increased the hardness, tensile strength and opacity of the membranes. Moreover, it ensured a uniform distribution of the mixture components. The uniformization of the mixture components in the presence of AA and CACl2 was observed by SEM and roughness analysis. Hydrogen bonding interactions between the biopolymers and the additives used were highlighted by FTIR analysis. All membranes have shown very good UV absorption. The results suggest that agar/alginate/glycerol membranes with AA and CaCl2 have the potential to be used in an active food packaging system

    Nutritional Characteristics Assessment of Sunflower Seeds, Oil and Cake. Perspective of Using Sunflower Oilcakes as a Functional Ingredient

    No full text
    Ample amounts of by-products are generated from the oil industry. Among them, sunflower oilcakes have the potential to be used for human consumption, thus achieving the concept of sustainability and circular economy. The study assessed the nutritional composition of sunflower seeds, cold-pressed oil and the remaining press-cakes with the aim of its valorization as a food ingredient. Sunflower oil contains principally oleic (19.81%) and linoleic (64.35%) acids, which cannot be synthetized by humans and need to be assimilated through a diet. Sunflower seeds are very nutritive (33.85% proteins and 65.42% lipids and 18 mineral elements). Due to the rich content of lipids, they are principally used as a source of vegetable oil. Compared to seeds, sunflower oilcakes are richer in fibers (31.88% and 12.64% for samples in form of pellets and cake, respectively) and proteins (20.15% and 21.60%), with a balanced amino acids profile. The remaining oil (15.77% and 14.16%) is abundant in unsaturated fatty acids (95.59% and 92.12%). The comparison between the three products showed the presence of valuable components that makes them suitable for healthy diets with an adequate intake of nutrients and other bioactive compounds with benefic effects

    Nutritional Characteristics Assessment of Sunflower Seeds, Oil and Cake. Perspective of Using Sunflower Oilcakes as a Functional Ingredient

    No full text
    Ample amounts of by-products are generated from the oil industry. Among them, sunflower oilcakes have the potential to be used for human consumption, thus achieving the concept of sustainability and circular economy. The study assessed the nutritional composition of sunflower seeds, cold-pressed oil and the remaining press-cakes with the aim of its valorization as a food ingredient. Sunflower oil contains principally oleic (19.81%) and linoleic (64.35%) acids, which cannot be synthetized by humans and need to be assimilated through a diet. Sunflower seeds are very nutritive (33.85% proteins and 65.42% lipids and 18 mineral elements). Due to the rich content of lipids, they are principally used as a source of vegetable oil. Compared to seeds, sunflower oilcakes are richer in fibers (31.88% and 12.64% for samples in form of pellets and cake, respectively) and proteins (20.15% and 21.60%), with a balanced amino acids profile. The remaining oil (15.77% and 14.16%) is abundant in unsaturated fatty acids (95.59% and 92.12%). The comparison between the three products showed the presence of valuable components that makes them suitable for healthy diets with an adequate intake of nutrients and other bioactive compounds with benefic effects
    corecore