20 research outputs found

    Generalized parity measurements

    Full text link
    Measurements play an important role in quantum computing (QC), by either providing the nonlinearity required for two-qubit gates (linear optics QC), or by implementing a quantum algorithm using single-qubit measurements on a highly entangled initial state (cluster state QC). Parity measurements can be used as building blocks for preparing arbitrary stabilizer states, and, together with 1-qubit gates are universal for quantum computing. Here we generalize parity gates by using a higher dimensional (qudit) ancilla. This enables us to go beyond the stabilizer/graph state formalism and prepare other types of multi-particle entangled states. The generalized parity module introduced here can prepare in one-shot, heralded by the outcome of the ancilla, a large class of entangled states, including GHZ_n, W_n, Dicke states D_{n,k}, and, more generally, certain sums of Dicke states, like G_n states used in secret sharing. For W_n states it provides an exponential gain compared to linear optics based methods.Comment: 7 pages, 1 fig; updated to the published versio

    Racial differences in systemic sclerosis disease presentation: a European Scleroderma Trials and Research group study

    Get PDF
    Objectives. Racial factors play a significant role in SSc. We evaluated differences in SSc presentations between white patients (WP), Asian patients (AP) and black patients (BP) and analysed the effects of geographical locations.Methods. SSc characteristics of patients from the EUSTAR cohort were cross-sectionally compared across racial groups using survival and multiple logistic regression analyses.Results. The study included 9162 WP, 341 AP and 181 BP. AP developed the first non-RP feature faster than WP but slower than BP. AP were less frequently anti-centromere (ACA; odds ratio (OR) = 0.4, P < 0.001) and more frequently anti-topoisomerase-I autoantibodies (ATA) positive (OR = 1.2, P = 0.068), while BP were less likely to be ACA and ATA positive than were WP [OR(ACA) = 0.3, P < 0.001; OR(ATA) = 0.5, P = 0.020]. AP had less often (OR = 0.7, P = 0.06) and BP more often (OR = 2.7, P < 0.001) diffuse skin involvement than had WP.AP and BP were more likely to have pulmonary hypertension [OR(AP) = 2.6, P < 0.001; OR(BP) = 2.7, P = 0.03 vs WP] and a reduced forced vital capacity [OR(AP) = 2.5, P < 0.001; OR(BP) = 2.4, P < 0.004] than were WP. AP more often had an impaired diffusing capacity of the lung than had BP and WP [OR(AP vs BP) = 1.9, P = 0.038; OR(AP vs WP) = 2.4, P < 0.001]. After RP onset, AP and BP had a higher hazard to die than had WP [hazard ratio (HR) (AP) = 1.6, P = 0.011; HR(BP) = 2.1, P < 0.001].Conclusion. Compared with WP, and mostly independent of geographical location, AP have a faster and earlier disease onset with high prevalences of ATA, pulmonary hypertension and forced vital capacity impairment and higher mortality. BP had the fastest disease onset, a high prevalence of diffuse skin involvement and nominally the highest mortality

    Long-Term Longitudinal Evaluation of Six Commercial Immunoassays for the Detection of IgM and IgG Antibodies against SARS CoV-2

    No full text
    The number of serological assays for SARS-CoV-2 has skyrocketed in the past year. Concerns have been raised regarding their performance characteristics, depending on the disease severity and the time of the analysis post-symptom onset (PSO). Thus, independent validations using an unbiased sample selection are required for meaningful serology data interpretation. We aimed to assess the clinical performance of six commercially available assays, the seroconversion, and the dynamics of the humoral response to SARS-CoV-2 infection. The study included 528 serum samples from 156 patients with follow-up visits up to six months PSO and 161 serum samples from healthy people. The IgG/total antibodies positive percentage increased and remained above 95% after six months when chemiluminescent immunoassay (CLIA) IgG antiS1/S2 and electro-chemiluminescent assay (ECLIA) total antiNP were used. At early time points PSO, chemiluminescent microparticle immunoassay (CMIA) IgM antiS achieved the best sensitivity. IgM and IgG appear simultaneously in most circumstances, and when performed in parallel the sensitivity increases. The severe and the moderate clinical forms were significantly associated with higher seropositivity percentage and antibody levels. High specificity was found in all evaluated assays, but the sensitivity was variable depending on the time PSO, severity of disease, detection method and targeted antigen

    Fish Bone Derived Bi-Phasic Calcium Phosphate Coatings Fabricated by Pulsed Laser Deposition for Biomedical Applications

    No full text
    We report on new biomaterials with promising bone and cartilage regeneration potential, from sustainable, cheap resources of fish origin. Thin films were fabricated from fish bone-derived bi-phasic calcium phosphate targets via pulsed laser deposition with a KrF * excimer laser source (λ = 248 nm, τFWHM ≤ 25 ns). Targets and deposited nanostructures were characterized by SEM and XRD, as well as by Energy Dispersive X-ray (EDX) and FTIR spectroscopy. Films were next assessed in vitro by dedicated cytocompatibility and antimicrobial assays. Films were Ca-deficient and contained a significant fraction of β-tricalcium phosphate apart from hydroxyapatite, which could contribute to an increased solubility and an improved biocompatibility for bone regeneration applications. The deposited structures were biocompatible as confirmed by the lack of cytotoxicity on human gingival fibroblast cells, making them promising for fast osseointegration implants. Pulsed laser deposition (PLD) coatings inhibited the microbial adhesion and/or the subsequent biofilm development. A persistent protection against bacterial colonization (Escherichia coli) was demonstrated for at least 72 h, probably due to the release of the native trace elements (i.e., Na, Mg, Si, and/or S) from fish bones. Progress is therefore expected in the realm of multifunctional thin film biomaterials, combining antimicrobial, anti-inflammatory, and regenerative properties for advanced implant coatings and nosocomial infections prevention applications
    corecore