16 research outputs found

    Lawsonia intracellularis: Revisiting the Disease Ecology and Control of This Fastidious Pathogen in Pigs

    Get PDF
    Lawsonia intracellularis is an anaerobic obligate intracellular bacterium infecting the small intestine and infrequently also the large intestine of pigs and other animals including hamsters and horses. The infection is characterized by proliferation, hemorrhage, necrosis, or any combination commonly referred to as “ileitis,” affecting the health and production efficacy of farmed pigs. Despite decades of research on this pathogen, the pathogenesis and virulence factors of this organism are not clearly known. In pigs, prophylaxis against L. intracellularis infection is achieved by either administration of subtherapeutic levels of in-feed antibiotic growth promoters or vaccination. While the former approach is considered to be effective in L. intracellularis control, potential regulations on subtherapeutic antibiotics in many countries in the near future may necessitate alternative approaches. The potential of manipulating the gut microbiome of pigs with feed ingredients or supplements to control L. intracellularis disease burden is promising based on the current understanding of the porcine gut microbiome in general, as well as preliminary insights into the disease ecology of L. intracellularis infection accrued over the last 30 years

    Bacillus pumilus probiotic feed supplementation mitigates Lawsonia intracellularis shedding and lesions

    Get PDF
    International audienceAbstractThe causative agent of ileitis, Lawsonia intracellularis, is commonly associated with diarrhea and reduced weight gain in growing pigs. The effect of in-feed probiotics on L. intracellularis infection dynamics was evaluated. In brief, 70 2.5-week-old-pigs were randomly divided into six groups with 10–20 pigs each. All pigs were fed an age appropriate base ration for the duration of the study, which was supplemented with one of three Bacillus strains including B. amyloliquefaciens (T01), B. licheniformis (T02) and B. pumilus (T03). Another group was orally vaccinated with a commercial live L. intracellularis vaccine (VAC) at 3 weeks of age. At 7 weeks of age, T01-LAW, T02-LAW, T03-LAW, VAC-LAW and the POS-CONTROL groups were challenged with L. intracellularis while the NEG-CONTROL pigs were not challenged. All pigs were necropsied 16 days later. By the time of inoculation, all VAC-LAW pigs had seroconverted and at necropsy 10–65% of the pigs in all other challenged groups were also seropositive. The results indicate a successful L. intracellularis challenge with highest bacterial DNA levels in POS-CONTROL pigs, VAC-LAW pigs and T01-LAW pigs. There was a delay in onset of shedding in T02-LAW and T03-LAW groups, which was reflected in less severe macroscopic and microscopic lesions, reduced intralesional L. intracellularis antigen levels and a lower area under the curve for bacterial shedding. Under the study conditions, two of the probiotics tested suppressed L. intracellularis infection. The obtained findings show the potential of probiotics in achieving antibiotic-free control of L. intracellularis

    c-Jun N-terminal kinase (JNK) is required for survival and proliferation of B-lymphoma cells

    Get PDF
    Several primary murine and human B lymphomas and cell lines were found to constitutively express high levels of the activated form of c-jun N-terminal kinase (JNK), a member of the mitogen-activated protein (MAP) kinase family. Proliferation of murine B lymphomas CH31, CH12.Lx, BKS-2, and WEHI-231 and the human B lymphomas BJAB, RAMOS, RAJI, OCI-Ly7, and OCI-Ly10 was strongly inhibited by SP600125, an anthrapyrazolone inhibitor of JNK, in a dose-dependent manner. The lymphoma cells underwent apoptosis and arrested at the G2/M phase of cell cycle. Furthermore, JNK-specific small interfering RNA (siRNA) inhibited the growth of both murine and human B lymphomas. Thus in the B-lymphoma model, JNK appears to have a unique prosurvival role. Survival signals provided by CD40 and interleukin-10 (IL-10) together reversed the growth inhibition induced by the JNK inhibitor. c-Myc protein levels were reduced in the presence of both SP600125 and JNK-specific siRNA, and CD40 ligation restored c-Myc levels. Moreover, Bcl-xL rescued WEHI-231 cells from apoptosis induced by the JNK inhibitor. The JNK inhibitor also reduced levels of early growth response gene-1 (Egr-1) protein, and overexpressing Egr-1 partially rescued lymphoma cells from apoptosis. Thus, JNK may act via c-Myc and Egr-1, which were shown to be important for B-lymphoma survival and growth. (Blood. 2005;106:1382-1391

    The ORF3 Protein of Porcine Circovirus Type 2 Interacts with Porcine Ubiquitin E3 Ligase Pirh2 and Facilitates p53 Expression in Viral Infection▿

    No full text
    Porcine circovirus type 2 (PCV2) is the primary causative agent of an emerging swine disease, postweaning multisystemic wasting syndrome. We previously showed that a newly identified protein, ORF3, plays a major role in virus-induced apoptosis and is involved in viral pathogenesis in vitro and in vivo. To characterize the role of the ORF3 protein in modulation of cellular function, a yeast two-hybrid system was used to screen a porcine cDNA library to find its interacting partner. We have isolated and characterized pPirh2 (for “porcine p53-induced RING-H2”), an E3 ubiquitin ligase, which specifically interacts with the ORF3 protein of PCV2. This interaction was further confirmed when the ORF3 protein coimmunoprecipitated with and colocalized to pPirh2 in PK15 cells. The ORF3 protein has been found to interact with the p53 binding domain of pPirh2 in yeast cells. Expression of the protein results in less pPirh2 expression in PCV2-infected cells. Furthermore, increases in p53 expression were observed in PCV2-infected and ORF3 (alone)-transfected cells. Phosphorylation of p53 at Ser-46, which is related to p53-induced apoptosis, was also time-dependently activated in PCV-infected and ORF3-transfected cells. Taken together, our results show that the PCV2 ORF3 protein specifically interacts with pPirh2 and inhibits its stabilization; this may lead to increasing p53 expression, resulting in apoptosis
    corecore