149 research outputs found

    Carotid atherosclerosis in people of European, South Asian and African Caribbean ethnicity in the Southall and Brent revisited study (SABRE)

    Get PDF
    Background: Atherosclerotic cardiovascular disease (ASCVD) risk differs by ethnicity. In comparison with Europeans (EA) South Asian (SA) people in UK experience higher risk of coronary heart disease (CHD) and stroke, while African Caribbean people have a lower risk of CHD but a higher risk of stroke. Aim: To compare carotid atherosclerosis in EA, SA, and AC participants in the Southall and Brent Revisited (SABRE) study and establish if any differences were explained by ASCVD risk factors. Methods: Cardiovascular risk factors were measured, and carotid ultrasound was performed in 985 individuals (438 EA, 325 SA, 228 AC). Carotid artery plaques and intima-media thickness (cIMT) were measured. Associations of carotid atherosclerosis with ethnicity were investigated using generalised linear models (GLMs), with and without adjustment for non-modifiable (age, sex) and modifiable risk factors (education, diabetes, hypertension, total cholesterol, HDL-C, alcohol consumption, current smoking). Results: Prevalence of any plaque was similar in EA and SA, but lower in AC (16, 16, and 6%, respectively; p < 0.001). In those with plaque, total plaque area, numbers of plaques, plaque class, or greyscale median did not differ by ethnicity; adjustment for risk factors had minimal effects. cIMT was higher in AC than the other ethnic groups after adjustment for age and sex, adjustment for risk factors attenuated this difference. Conclusion: Prevalence of carotid artery atherosclerotic plaques varies by ethnicity, independent of risk factors. Lower plaque prevalence in in AC is consistent with their lower risk of CHD but not their higher risk of stroke. Higher cIMT in AC may be explained by risk factors. The similarity of plaque burden in SA and EA despite established differences in ASCVD risk casts some doubt on the utility of carotid ultrasound as a means of assessing risk across these ethnic groups

    Global marine redox changes drove the rise and fall of the Ediacara biota

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordThe role of O2 in the evolution of early animals, as represented by some members of the Ediacara biota, has been heavily debated because current geochemical evidence paints a conflicting picture regarding global marine O2 levels during key intervals of the rise and fall of the Ediacara biota. Fossil evidence indicates that the diversification the Ediacara biota occurred during or shortly after the Ediacaran Shuram negative C-isotope Excursion (SE), which is often interpreted to reflect ocean oxygenation. However, there is conflicting evidence regarding ocean oxygen levels during the SE and the middle Ediacaran Period. To help resolve this debate, we examined U isotope variations (δ238U) in three carbonate sections from South China, Siberia, and USA that record the SE. The δ238U data from all three sections are in excellent agreement and reveal the largest positive shift in δ238U ever reported in the geologic record (from ~ −0.74‰ to ~ −0.26‰). Quantitative modeling of these data suggests that the global ocean switched from a largely anoxic state (26%–100% of the seafloor overlain by anoxic waters) to near-modern levels of ocean oxygenation during the SE. This episode of ocean oxygenation is broadly coincident with the rise of the Ediacara biota. Following this initial radiation, the Ediacara biota persisted until the terminal Ediacaran period, when recently published U isotope data indicate a return to more widespread ocean anoxia. Taken together, it appears that global marine redox changes drove the rise and fall of the Ediacara biota.NASADanish Agency for Science, Technology and InnovationNational Science Foundation (NSF)National Key Basic Research Program of ChinaNatural Environment Research Council (NERC)Natural Science Foundation of Chin

    Molybdenum isotope and trace metal signals in an iron-rich Mesoproterozoic ocean: A snapshot from the Vindhyan Basin, India

    Get PDF
    Fundamental questions persist regarding the redox structure and trace metal content of the Mesoproterozoic oceans. Multiple lines of evidence suggest more widespread anoxia in the deep oceans compared to today, and iron speciation indicates that anoxia was largely accompanied by dissolved ferrous iron (ferruginous conditions) rather than free sulfide (euxinia). Still, exceptions exist—euxinic conditions have been reported from some ocean margin and epeiric sea settings, and oxic conditions were reported in one deeper water environment and are also known from shallow waters. Constraining the temporal evolution of Mesoproterozoic marine redox structure is critical because it likely governed redox-sensitive trace metal availability, which in turn played a significant role in marine diazotrophy and the evolution of early eukaryotes. Here, we present a new, multi-proxy geochemical dataset from the ~1.2 Ga Bijaygarh Shale (Kaimur Group, Vindhyan Basin, India) emphasizing total organic carbon, iron speciation, and trace metal concentrations, as well as sulfur, nitrogen, and molybdenum isotopes. This unit was deposited in an open shelf setting near or just below storm wave base. Taken together, our data provide a unique snapshot of a biologically important shallow shelf setting during the Mesoproterozoic Era, which includes: 1) locally ferruginous waters below the zone of wave mixing, 2) muted enrichment of trace metals sensitive to general anoxia (e.g., chromium) and variable enrichment of trace metals sensitive to euxinia (e.g., molybdenum and, to a lesser extent, vanadium), 3) general sulfate limitation, and 4) nitrogen fixation by molybdenum-nitrogenase and a dominantly anaerobic nitrogen cycle in offshore settings. Differential patterns of trace metal enrichment are consistent with data from other basins and suggest a largely anoxic ocean with limited euxinia during the Mesoproterozoic Era. Our new molybdenum isotope data—the first such data from unambiguously marine shales deposited between 1.4 and 0.75 Ga—record values up to +1.18 ± 0.12‰ that are analogous to data from other Mesoproterozoic shale units. Ultimately, this study provides a broad, multi-proxy perspective on the redox conditions that accompanied early eukaryotic evolution

    Extensive marine anoxia associated with the Late Devonian Hangenberg Crisis

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record The global Hangenberg Crisis near the Devonian-Carboniferous boundary (DCB) represents one of the major Phanerozoic mass extinction events, which shaped the roots of modern vertebrate biodiversity. Marine anoxia has been cited as the proximate kill mechanism for this event. However, the detailed timing, duration, and extent of global marine redox chemistry changes across this critical interval remain controversial because most of the studies to date only constrain changes in local or regional redox chemistry. Thus, opinions on the significance of anoxia as a kill mechanism are variable—from anoxia being a primary driver to being relatively unimportant. In this study, we explore the evolution of global marine redox chemistry using U isotopes of marine limestones. The δ238U trends at Long'an section in South China document systematic oscillations with three negative shifts punctuated by two positive events in between. The magnitude of the δ238U oscillations implies that the sediments do not record contemporaneous seawater with a constant offset at all times. The lack of covariation between δ238U data and diagenetic indicators (e.g., Mn and Sr contents, Mn/Sr ratio, δ18O) suggests that the δ238U trends are not produced by the same post-depositional diagenetic processes. Instead, trace-metal enrichments suggest that more reducing conditions prevailed during the deposition of the two positive events. We present plausible model scenarios that fit the observed δ238U trends in the context of redox-sensitive trace metal data suggesting marine anoxia expanded in the latest Devonian oceans to cover >5% of the continental shelf seafloor area. The rapid expansion of marine anoxia coincident with the onset of the Hangenberg Crisis supports marine anoxia as an important kill mechanism. Biogeochemical modeling of the coupled C-P-U cycles suggests that intensified continental weathering, for example, assisted by the spread of seed plants with deeper root systems at this time, could have triggered expansion of marine anoxia and other global changes (e.g., positive excursion in δ13Ccarb and decrease in sea surface temperature) in the latest Devonian. The anoxic event is inferred to have been transient as climatic cooling would have reduced weathering fluxes.Natural Environment Research Council (NERC

    The ineluctable requirement for the trans-iron elements molybdenum and/or tungsten in the origin of life

    Get PDF
    An evolutionary tree of key enzymes from the Complex-Iron-Sulfur-Molybdoenzyme (CISM) superfamily distinguishes “ancient” members, i.e. enzymes present already in the last universal common ancestor (LUCA) of prokaryotes, from more recently evolved subfamilies. The majority of the presented subfamilies and, as a consequence, the Molybdo-enzyme superfamily as a whole, appear to have existed in LUCA. The results are discussed with respect to the nature of bioenergetic substrates available to early life and to problems arising from the low solubility of molybdenum under conditions of the primordial Earth

    Prebiotic synthesis of phosphoenol pyruvate by α-phosphorylation-controlled triose glycolysis

    Get PDF
    Phosphoenol pyruvate is the highest-energy phosphate found in living organisms and is one of the most versatile molecules in metabolism. Consequently, it is an essential intermediate in a wide variety of biochemical pathways, including carbon fixation, the shikimate pathway, substrate-level phosphorylation, gluconeogenesis and glycolysis. Triose glycolysis (generation of ATP from glyceraldehyde 3-phosphate via phosphoenol pyruvate) is among the most central and highly conserved pathways in metabolism. Here, we demonstrate the efficient and robust synthesis of phosphoenol pyruvate from prebiotic nucleotide precursors, glycolaldehyde and glyceraldehyde. Furthermore, phosphoenol pyruvate is derived within an α-phosphorylation controlled reaction network that gives access to glyceric acid 2-phosphate, glyceric acid 3-phosphate, phosphoserine and pyruvate. Our results demonstrate that the key components of a core metabolic pathway central to energy transduction and amino acid, sugar, nucleotide and lipid biosyntheses can be reconstituted in high yield under mild, prebiotically plausible conditions

    Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event

    Get PDF
    The early Earth was characterized by the absence of oxygen in the ocean–atmosphere system, in contrast to the well-oxygenated conditions that prevail today. Atmospheric concentrations first rose to appreciable levels during the Great Oxidation Event, roughly 2.5–2.3 Gyr ago. The evolution of oxygenic photosynthesis is generally accepted to have been the ultimate cause of this rise, but it has proved difficult to constrain the timing of this evolutionary innovation. The oxidation of manganese in the water column requires substantial free oxygen concentrations, and thus any indication that Mn oxides were present in ancient environments would imply that oxygenic photosynthesis was ongoing. Mn oxides are not commonly preserved in ancient rocks, but there is a large fractionation of molybdenum isotopes associated with the sorption of Mo onto the Mn oxides that would be retained. Here we report Mo isotopes from rocks of the Sinqeni Formation, Pongola Supergroup, South Africa. These rocks formed no less than 2.95 Gyr ago in a nearshore setting. The Mo isotopic signature is consistent with interaction with Mn oxides. We therefore infer that oxygen produced through oxygenic photosynthesis began to accumulate in shallow marine settings at least half a billion years before the accumulation of significant levels of atmospheric oxygen

    Selenium isotope evidence for progressive oxidation of the Neoproterozoic biosphere

    Get PDF
    Neoproterozoic (1,000–542 Myr ago) Earth experienced profound environmental change, including ‘snowball’ glaciations, oxygenation and the appearance of animals. However, an integrated understanding of these events remains elusive, partly because proxies that track subtle oceanic or atmospheric redox trends are lacking. Here we utilize selenium (Se) isotopes as a tracer of Earth redox conditions. We find temporal trends towards lower δ82/76Se values in shales before and after all Neoproterozoic glaciations, which we interpret as incomplete reduction of Se oxyanions. Trends suggest that deep-ocean Se oxyanion concentrations increased because of progressive atmospheric and deep-ocean oxidation. Immediately after the Marinoan glaciation, higher δ82/76Se values superpose the general decline. This may indicate less oxic conditions with lower availability of oxyanions or increased bioproductivity along continental margins that captured heavy seawater δ82/76Se into buried organics. Overall, increased ocean oxidation and atmospheric O2 extended over at least 100 million years, setting the stage for early animal evolution

    A global transition to ferruginous conditions in the early Neoproterozoic oceans

    Get PDF
    Eukaryotic life expanded during the Proterozoic eon1, 2.5 to 0.542 billion years ago, against a background of fluctuating ocean chemistry2, 3, 4. After about 1.8 billion years ago, the global ocean is thought to have been characterized by oxygenated surface waters, with anoxic and sulphidic waters in middle depths along productive continental margins and anoxic and iron-containing (ferruginous) deeper waters5, 6, 7. The spatial extent of sulphidic waters probably varied through time5, 6, but this surface-to-deep redox structure is suggested to have persisted until the first Neoproterozoic glaciation about 717 million years ago8, 9, 10, 11. Here we report an analysis of ocean redox conditions throughout the Proterozoic using new and existing iron speciation and sulphur isotope data from multiple cores and outcrops. We find a global transition from sulphidic to ferruginous mid-depth waters in the earliest Neoproterozoic, coincident with the amalgamation of the supercontinent Rodinia at low latitudes. We suggest that ferruginous conditions were initiated by an increase in the oceanic influx of highly reactive iron relative to sulphate, driven by a change in weathering regime and the uptake of sulphate by extensive continental evaporites on Rodinia. We propose that this transition essentially detoxified ocean margin settings, allowing for expanded opportunities for eukaryote diversification following a prolonged evolutionary stasis before one billion years ago

    Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals.

    Get PDF
    The early diversification of animals (∼630 Ma), and their development into both motile and macroscopic forms (∼575-565 Ma), has been linked to stepwise increases in the oxygenation of Earth's surface environment. However, establishing such a linkage between oxygen and evolution for the later Cambrian 'explosion' (540-520 Ma) of new, energy-sapping body plans and behaviours has proved more elusive. Here we present new molybdenum isotope data, which demonstrate that the areal extent of oxygenated bottom waters increased in step with the early Cambrian bioradiation of animals and eukaryotic phytoplankton. Modern-like oxygen levels characterized the ocean at ∼521 Ma for the first time in Earth history. This marks the first establishment of a key environmental factor in modern-like ecosystems, where animals benefit from, and also contribute to, the 'homeostasis' of marine redox conditions
    corecore