4 research outputs found

    The Formation of Nanoscale Closed Graphene Surfaces during Fullerite C60 Hot Isostatic Pressing

    No full text
    The fullerite C60 modified by hot isostatic pressing (HIP) at 0.1 GPa in argon near and beyond its thermal stability region (920–1270 K temperature interval) was studied by X-ray diffractometry, Raman spectroscopy, ultra soft X-ray photoelectron and near edge X-ray absorption fine structure spectroscopy. It was found that the C60 molecules merge into closed nanocapsules with a graphene surface during the thermal treatment. The conducted studies showed that using HIP treatment of the fullerite C60, it is possible to obtain a chemically resistant material with a high hardness and elasticity, as well as a density lower than that of the graphite. This new material, consisting of closed graphene nanocapsules 2–5 nm in size, formed by sp2 covalent bonds between carbon atoms is promising for various applications, and as a basis for the synthesis of new composite materials

    The Formation of Nanoscale Closed Graphene Surfaces during Fullerite C<sub>60</sub> Hot Isostatic Pressing

    No full text
    The fullerite C60 modified by hot isostatic pressing (HIP) at 0.1 GPa in argon near and beyond its thermal stability region (920–1270 K temperature interval) was studied by X-ray diffractometry, Raman spectroscopy, ultra soft X-ray photoelectron and near edge X-ray absorption fine structure spectroscopy. It was found that the C60 molecules merge into closed nanocapsules with a graphene surface during the thermal treatment. The conducted studies showed that using HIP treatment of the fullerite C60, it is possible to obtain a chemically resistant material with a high hardness and elasticity, as well as a density lower than that of the graphite. This new material, consisting of closed graphene nanocapsules 2–5 nm in size, formed by sp2 covalent bonds between carbon atoms is promising for various applications, and as a basis for the synthesis of new composite materials

    Quantitative Characterization of Oxygen-Containing Groups on the Surface of Carbon Materials: XPS and NEXAFS Study

    No full text
    The results of the comparative quantitative study of oxygen-containing groups adsorbed on the surface of carbonized sponge scaffold (CSS), highly oriented pyrolytic graphite (HOPG), fullerite C60 and multi-walled carbon nanotubes (MWCNTs) introduced into a high vacuum from the atmosphere without any pre-treatment of the surface are discussed. The studied materials are first tested by XRD and Raman spectroscopy, and then quantitatively characterized by XPS and NEXAFS. The research results showed the presence of carbon oxides and water-dissociation products on the surfaces of materials. It was shown that main source of oxygen content (~2%) on the surface of HOPG, MWCNTs, and C60 powder is water condensed from the atmosphere in the form of an adsorbed water molecule and hydroxyl group. On the CSS surface, oxygen atoms are present in the forms of carbon oxides (4–5%) and adsorbed water molecules and hydroxyl groups (5–6%). The high content of adsorbed water on the CSS surface is due to the strong roughness and high porosity of the surface

    The Identification of Cu–O–C Bond in Cu/MWCNTs Hybrid Nanocomposite by XPS and NEXAFS Spectroscopy

    No full text
    The results of the research of a composite based on multi-walled carbon nanotubes (MWCNTs) decorated with CuO/Cu2O/Cu nanoparticles deposited by the cupric formate pyrolysis are discussed. The study used a complementary set of methods, including scanning and transmission electron microscopy, X-ray diffractometry, Raman, and ultrasoft X-ray spectroscopy. The investigation results show the good adhesion between the copper nanoparticles coating and the MWCNT surface through the oxygen atom bridge formation between the carbon atoms of the MWCNT outer graphene layer and the oxygen atoms of CuO and Cu2O oxides. The formation of the Cu–O–C bond between the coating layer and the outer nanotube surface is clearly confirmed by the results of the O 1s near edge X-ray absorption fine structure (NEXAFS) and X-ray photoelectron spectroscopy (XPS) of the Cu/MWCNTs nanocomposite. The XPS measurements were performed using a laboratory spectrometer with sample charge compensation, and the NEXAFS studies were carried out using the synchrotron radiation of the Russian–German dipole beamline at BESSY-II (Berlin, Germany) and the NanoPES station at the Kurchatov Center for Synchrotron Radiation and Nanotechnology (Moscow, Russia)
    corecore