75 research outputs found
Combining chromosomal arm status and significantly aberrant genomic locations reveals new cancer subtypes
Many types of tumors exhibit chromosomal losses or gains, as well as local
amplifications and deletions. Within any given tumor type, sample specific
amplifications and deletionsare also observed. Typically, a region that is
aberrant in more tumors,or whose copy number change is stronger, would be
considered as a more promising candidate to be biologically relevant to cancer.
We sought for an intuitive method to define such aberrations and prioritize
them. We define V, the volume associated with an aberration, as the product of
three factors: a. fraction of patients with the aberration, b. the aberrations
length and c. its amplitude. Our algorithm compares the values of V derived
from real data to a null distribution obtained by permutations, and yields the
statistical significance, p value, of the measured value of V. We detected
genetic locations that were significantly aberrant and combined them with
chromosomal arm status to create a succint fingerprint of the tumor genome.
This genomic fingerprint is used to visualize the tumors, highlighting events
that are co ocurring or mutually exclusive. We allpy the method on three
different public array CGH datasets of Medulloblastoma and Neuroblastoma, and
demonstrate its ability to detect chromosomal regions that were known to be
altered in the tested cancer types, as well as to suggest new genomic locations
to be tested. We identified a potential new subtype of Medulloblastoma, which
is analogous to Neuroblastoma type 1.Comment: 34 pages, 3 figures; to appear in Cancer Informatic
Utilizing microarray spot characteristics to improve cross-species hybridization results
AbstractCross-species hybridization (CSH), i.e., the hybridization of a (target) species RNA to a DNA microarray that represents another (reference) species, is often used to study species diversity. However, filtration of CSH data has to be applied to extract valid information. We present a novel approach to filtering the CSH data, which utilizes spot characteristics (SCs) of image-quantification data from scanned spotted cDNA microarrays. Five SCs that were affected by sequence similarity between probe and target sequences were identified (designated as BS-SCs). Filtration by all five BS-SC thresholds demonstrated improved clustering for two of the three examined experiments, suggesting that BS-SCs may serve for filtration of data obtained by CSH, to improve the validity of the results. This CSH data-filtration approach could become a promising tool for studying a variety of species, especially when no genomic information is available for the target species
Wide-Scale Analysis of Human Functional Transcription Factor Binding Reveals a Strong Bias towards the Transcription Start Site
We introduce a novel method to screen the promoters of a set of genes with
shared biological function, against a precompiled library of motifs, and find
those motifs which are statistically over-represented in the gene set. The gene
sets were obtained from the functional Gene Ontology (GO) classification; for
each set and motif we optimized the sequence similarity score threshold,
independently for every location window (measured with respect to the TSS),
taking into account the location dependent nucleotide heterogeneity along the
promoters of the target genes. We performed a high throughput analysis,
searching the promoters (from 200bp downstream to 1000bp upstream the TSS), of
more than 8000 human and 23,000 mouse genes, for 134 functional Gene Ontology
classes and for 412 known DNA motifs. When combined with binding site and
location conservation between human and mouse, the method identifies with high
probability functional binding sites that regulate groups of biologically
related genes. We found many location-sensitive functional binding events and
showed that they clustered close to the TSS. Our method and findings were put
to several experimental tests. By allowing a "flexible" threshold and combining
our functional class and location specific search method with conservation
between human and mouse, we are able to identify reliably functional TF binding
sites. This is an essential step towards constructing regulatory networks and
elucidating the design principles that govern transcriptional regulation of
expression. The promoter region proximal to the TSS appears to be of central
importance for regulation of transcription in human and mouse, just as it is in
bacteria and yeast.Comment: 31 pages, including Supplementary Information and figure
Scan Statistic Tail Probability Assessment Based on Process Covariance and Window Size
Recognition of the semantics and kinematics of gestures: Neural responses to “what” and “how”?
- …
