3 research outputs found

    Experimental Investigation of Thermal Bridges and Heat Transfer through Window Frame Elements at Achieving Energy Saving

    No full text
    Windows are responsible for significant amounts of energy loss through typical building envelopes. There have been multiple studies on heat loss through the glazing unit and frame system. This study presents an experimental investigation of a window unit and focuses specifically on the conductance between the structural elements and the frame system of a conventional house in the city of Xanthi, northern Greece. It is obvious that even a perfect window system cannot reduce heat transfer between the base of the frame and the upper surface of the floor. The experimental and simulation procedure of this project includes the installation of an insulating layer in front of the window unit for a variety of frames (solid wood, aluminum, PVC, etc.) at different distances. The main objective of this paper is to determine how effective an insulating barrier can be in respect to different types of frame, glazing, and weather conditions for the control of heat loss. Through the application of this technique, in combination with an appropriate insulating frame and window unit, designers can control the temperature inside the room at close proximity to the windows, in order to contribute to energy saving, aiming towards a building with zero energy demand

    Electrochemical Degradation of Indigo Carmine Textile Dye Powered by Solar Photovoltaic Energy

    No full text
    The proposed photovoltaic electro oxidation process combines the autonomous and environmentally friendly photovoltaic solar energy with the capability of electro oxidation at boron doped diamond electrodes to effectively decolorize and degrade indigo carmine textile dye from wastewater. The photovoltaic array can be connected directly to the electrochemical reactor without batteries increasing, in this way, the system sustainability and eliminating the environmental threat of improper battery disposal. The system is made versatile according to the instantaneous solar irradiation by adjusting the wastewater flow rate to the current intensity supplied by the photovoltaic panel. All operating parameters affecting the efficiency of the proposed process, such as wastewater conductivity, pH, flow rate, current density, electro processing time and solar irradiance were studied and optimal conditions were investigated. The experimental results showed that by applying current densities of 1, 2.5 and 5 mA cm2 the initial dye concentration of 100 mg L-1 in the treated wastewater was quantitatively eliminated in 45, 20 and 10 minutes of electro processing respectively. The process is appropriate for treatment of colored industrial textile dye house effluents and especially for applications in remote and isolated locations without connection to public electric grid

    Experimental Investigation of Thermal Bridges and Heat Transfer through Window Frame Elements at Achieving Energy Saving

    No full text
    Windows are responsible for significant amounts of energy loss through typical building envelopes. There have been multiple studies on heat loss through the glazing unit and frame system. This study presents an experimental investigation of a window unit and focuses specifically on the conductance between the structural elements and the frame system of a conventional house in the city of Xanthi, northern Greece. It is obvious that even a perfect window system cannot reduce heat transfer between the base of the frame and the upper surface of the floor. The experimental and simulation procedure of this project includes the installation of an insulating layer in front of the window unit for a variety of frames (solid wood, aluminum, PVC, etc.) at different distances. The main objective of this paper is to determine how effective an insulating barrier can be in respect to different types of frame, glazing, and weather conditions for the control of heat loss. Through the application of this technique, in combination with an appropriate insulating frame and window unit, designers can control the temperature inside the room at close proximity to the windows, in order to contribute to energy saving, aiming towards a building with zero energy demand
    corecore